Antonella Girgenti , Pasquale Picone , Miriam Buttacavoli , Laura Palumbo , Flores Naselli , Elena Lo Presti , Desirée Pecora , Chiara Cipollina , Francesca Annunziata , Andrea Pinto , Lucia Tamborini , Domenico Nuzzo
{"title":"Mitochondria-targeted rosmarinic acid: Its role against oxidative damage","authors":"Antonella Girgenti , Pasquale Picone , Miriam Buttacavoli , Laura Palumbo , Flores Naselli , Elena Lo Presti , Desirée Pecora , Chiara Cipollina , Francesca Annunziata , Andrea Pinto , Lucia Tamborini , Domenico Nuzzo","doi":"10.1016/j.biopha.2025.118114","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondria plays a key role in the physiological function of neurons, and alteration of this organelle results in severe and irreversible cell damage. Altered mitochondrial activity usually leads to cell degeneration that compromises the function of the neuronal network. Oxidative stress represents the main critical point of this mitochondrial alteration. Research focuses on finding specific treatments for the mitochondrion to target molecules capable of acting in that specific organelle. In this study, we synthesized and evaluated a series of mitochondria-targeted compounds derived from natural phenolic acids, including caffeic, syringic, gallic and rosmarinic acid, intending to enhance their antioxidant and neuroprotective properties. Among these, MITO-rosmarinic was a highly effective compound, demonstrating the ability to mitigate oxidative stress-induced damage in neuronal cells. Our findings underscore the potential of MITO-rosmarinic as a candidate for preventing mitochondrial dysfunction in neurodegenerative diseases.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"187 ","pages":"Article 118114"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225003087","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria plays a key role in the physiological function of neurons, and alteration of this organelle results in severe and irreversible cell damage. Altered mitochondrial activity usually leads to cell degeneration that compromises the function of the neuronal network. Oxidative stress represents the main critical point of this mitochondrial alteration. Research focuses on finding specific treatments for the mitochondrion to target molecules capable of acting in that specific organelle. In this study, we synthesized and evaluated a series of mitochondria-targeted compounds derived from natural phenolic acids, including caffeic, syringic, gallic and rosmarinic acid, intending to enhance their antioxidant and neuroprotective properties. Among these, MITO-rosmarinic was a highly effective compound, demonstrating the ability to mitigate oxidative stress-induced damage in neuronal cells. Our findings underscore the potential of MITO-rosmarinic as a candidate for preventing mitochondrial dysfunction in neurodegenerative diseases.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.