Dynamics of jet formation in inertial droplet

IF 3.6 2区 工程技术 Q1 MECHANICS
Arahata Senapati , Gaurav Singh , Arnab Atta , Rajaram Lakkaraju
{"title":"Dynamics of jet formation in inertial droplet","authors":"Arahata Senapati ,&nbsp;Gaurav Singh ,&nbsp;Arnab Atta ,&nbsp;Rajaram Lakkaraju","doi":"10.1016/j.ijmultiphaseflow.2025.105242","DOIUrl":null,"url":null,"abstract":"<div><div>We present a numerical investigation of a suddenly accelerated droplet in a surrounding viscous liquid, which exposes the droplet to inertial forces until it eventually comes to a stop. Using the volume of fluid method, we observed that as the droplet moves, it generates a toroidal vortex, and a high-speed liquid jet develops at its rear, with speeds exceeding the droplet’s speed by at least an order of magnitude. Our study focused on droplet deformation and liquid jet characteristics across a range of Weber numbers (<span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>) from 13 to 200 and Ohnesorge numbers (<span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span>) from <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>. Based on the characteristics of the jets, we classified them into three categories: (1) weak jets that cannot penetrate the rear side of the droplet for <span><math><mrow><mn>13</mn><mo>&lt;</mo><mi>W</mi><mi>e</mi><mo>&lt;</mo><mn>23</mn></mrow></math></span>, (2) short jets that can penetrate the droplet for <span><math><mrow><mn>23</mn><mo>&lt;</mo><mi>W</mi><mi>e</mi><mo>&lt;</mo><mn>50</mn></mrow></math></span>, and (3) strong jets that rupture the droplet for <span><math><mrow><mi>W</mi><mi>e</mi><mo>&gt;</mo><mn>50</mn></mrow></math></span>. Our results indicate that droplet deformation is independent of the Ohnesorge number (<span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span>). We developed a semi-analytical theory based on the energy analysis to predict the maximum jet speed.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"189 ","pages":"Article 105242"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030193222500120X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a numerical investigation of a suddenly accelerated droplet in a surrounding viscous liquid, which exposes the droplet to inertial forces until it eventually comes to a stop. Using the volume of fluid method, we observed that as the droplet moves, it generates a toroidal vortex, and a high-speed liquid jet develops at its rear, with speeds exceeding the droplet’s speed by at least an order of magnitude. Our study focused on droplet deformation and liquid jet characteristics across a range of Weber numbers (We) from 13 to 200 and Ohnesorge numbers (Oh) from 104 to 102. Based on the characteristics of the jets, we classified them into three categories: (1) weak jets that cannot penetrate the rear side of the droplet for 13<We<23, (2) short jets that can penetrate the droplet for 23<We<50, and (3) strong jets that rupture the droplet for We>50. Our results indicate that droplet deformation is independent of the Ohnesorge number (Oh). We developed a semi-analytical theory based on the energy analysis to predict the maximum jet speed.

Abstract Image

惯性液滴中射流形成动力学
我们提出了一个数值研究突然加速液滴在周围的粘性液体,这暴露液滴惯性力,直到它最终来到一个停止。利用流体体积法,我们观察到液滴在运动过程中会产生一个环形涡,并在其尾部形成高速液体射流,其速度至少超过液滴的速度一个数量级。我们的研究重点是在韦伯数(We)从13到200和奥纳乔治数(Oh)从10−4到10−2范围内的液滴变形和液体喷射特性。根据射流的特性,我们将其分为三类:(1)弱射流(13<We<23)不能穿透液滴背面;(2)短射流(23<We<50)可以穿透液滴;(3)强射流(50)使液滴破裂。结果表明,液滴的变形与奥内乔治数(Oh)无关。我们在能量分析的基础上发展了半解析理论来预测最大射流速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信