Deciphering of electron transfer and microbial community of electrogenic oxygen reducing biofilms to sulfamethoxazole stress

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Qing Jiang , Xing Dong , Yang Liu , Xiaoyu Zhou , Guomeng Sun , Ke Shi , Yanlu Qiao , Hao Jiang , Yujie Feng
{"title":"Deciphering of electron transfer and microbial community of electrogenic oxygen reducing biofilms to sulfamethoxazole stress","authors":"Qing Jiang ,&nbsp;Xing Dong ,&nbsp;Yang Liu ,&nbsp;Xiaoyu Zhou ,&nbsp;Guomeng Sun ,&nbsp;Ke Shi ,&nbsp;Yanlu Qiao ,&nbsp;Hao Jiang ,&nbsp;Yujie Feng","doi":"10.1016/j.biortech.2025.132597","DOIUrl":null,"url":null,"abstract":"<div><div>This study first evaluated the sulfamethoxazole (SMX) effects on oxygen-reducing biocathodes in microbial fuel cells (MFCs). Low SMX (0.5 mg L<sup>–1</sup>) enhanced current density by 20 % via increased direct electron transfer and lower charge transfer resistance. High SMX (10–30 mg L<sup>–1</sup>) suppressed electrochemical performance. SMX preferentially bound protein-like EPS components over fulvic-like fractions, inducing sequential structural changes (1054 &gt; 970 &gt; 3464 &gt; 2921 &gt; 1643 &gt; 1350 cm<sup>−1</sup>). SMX exposure reshaped microbial communities, enriching antibiotic-resistant genera (<em>Truepera</em>, <em>Nitrospira</em>, <em>Brevundimonas</em>, etc.). Network analysis revealed low SMX enhanced community complexity/stability, while high doses simplified biofilm structure. Functional genes for electron transfer, carbon metabolism and oxidative phosphorylation increased at 0.5 mg L<sup>–1</sup> SMX but decreased under high concentrations. Overall, this study elucidates the dual role of SMX in modulating oxygen-reducing biofilm composition, function, and capability, laying the groundwork for optimized application of MFC in treating SMX-contaminated wastewater.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"430 ","pages":"Article 132597"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425005632","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study first evaluated the sulfamethoxazole (SMX) effects on oxygen-reducing biocathodes in microbial fuel cells (MFCs). Low SMX (0.5 mg L–1) enhanced current density by 20 % via increased direct electron transfer and lower charge transfer resistance. High SMX (10–30 mg L–1) suppressed electrochemical performance. SMX preferentially bound protein-like EPS components over fulvic-like fractions, inducing sequential structural changes (1054 > 970 > 3464 > 2921 > 1643 > 1350 cm−1). SMX exposure reshaped microbial communities, enriching antibiotic-resistant genera (Truepera, Nitrospira, Brevundimonas, etc.). Network analysis revealed low SMX enhanced community complexity/stability, while high doses simplified biofilm structure. Functional genes for electron transfer, carbon metabolism and oxidative phosphorylation increased at 0.5 mg L–1 SMX but decreased under high concentrations. Overall, this study elucidates the dual role of SMX in modulating oxygen-reducing biofilm composition, function, and capability, laying the groundwork for optimized application of MFC in treating SMX-contaminated wastewater.

Abstract Image

电致氧生物膜在磺胺甲恶唑胁迫下的电子转移和微生物群落解析
本研究首先评估了磺胺甲恶唑(SMX)对微生物燃料电池(mfc)中氧还原生物阴极的影响。低SMX (0.5 mg L-1)通过增加直接电子转移和降低电荷转移电阻,使电流密度提高20%。高浓度SMX (10-30 mg L-1)抑制了电化学性能。SMX优先结合蛋白样EPS组分而不是fulvici样组分,诱导序列结构变化(1054 >;970比;3464比;2921比;1643比;1350厘米−1)。SMX暴露重塑了微生物群落,丰富了抗生素耐药属(Truepera, Nitrospira, Brevundimonas等)。网络分析表明,低剂量SMX增强了群落的复杂性/稳定性,而高剂量SMX简化了生物膜结构。电子传递、碳代谢和氧化磷酸化功能基因在0.5 mg L-1 SMX处理下增加,高浓度下减少。总体而言,本研究阐明了SMX在调节氧还原生物膜组成、功能和能力方面的双重作用,为MFC在处理SMX污染废水中的优化应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信