{"title":"Experimental fatigue characterization and modeling of a bi-component structural acrylic adhesive: Application to single-lap joints","authors":"Sidonie Pinaroli , Katell Derrien , Anthony Reullier , Léo Morin , Véronique Favier","doi":"10.1016/j.ijadhadh.2025.104026","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this paper is to predict the fatigue behavior of bonded joints made of a bi-component structural acrylic adhesive. The approach considered is based on a characterization of the fatigue properties of the bulk adhesive combined with a finite element modeling of the bonded joint to provide the heterogeneous stress field within the adhesive. The identification of the fatigue model is conducted with experimental bulk adhesive tests under two loadings (tensile–compression and tensile–tensile) in order to account for the effect of the mean stress. A modified Crossland criterion, in the limited life time domain, is used to predict the fatigue life of the bonded joint assembly. The numerical fatigue life determined with this approach is compared to the experimental fatigue life of the assembly. A good correlation is found between the numerical model and the experimental results.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"140 ","pages":"Article 104026"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749625000934","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to predict the fatigue behavior of bonded joints made of a bi-component structural acrylic adhesive. The approach considered is based on a characterization of the fatigue properties of the bulk adhesive combined with a finite element modeling of the bonded joint to provide the heterogeneous stress field within the adhesive. The identification of the fatigue model is conducted with experimental bulk adhesive tests under two loadings (tensile–compression and tensile–tensile) in order to account for the effect of the mean stress. A modified Crossland criterion, in the limited life time domain, is used to predict the fatigue life of the bonded joint assembly. The numerical fatigue life determined with this approach is compared to the experimental fatigue life of the assembly. A good correlation is found between the numerical model and the experimental results.
期刊介绍:
The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.