{"title":"Copula-based dependency modelling of hydraulic properties for non-linear filtration through porous media","authors":"Subodh Shrivastava , Ashes Banerjee , Ashwin Singh , Mritunjay Kumar Singh , Srinivas Pasupuleti","doi":"10.1016/j.powtec.2025.121069","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting hydraulic parameters in porous media, such as Darcy and non-Darcy coefficients, is critical for understanding flow dynamics and designing hydraulic structures. This study develops a stochastic modelling framework using bivariate copula models to estimate these parameters, leveraging easily measurable quantities like packing diameter etc. A synthetic dataset, derived from experimental distributions reported in the literature, was utilized to overcome challenges associated with direct data collection. The analysis revealed that hydraulic radius is strongly correlated with Darcy (Kendall's tau = −0.74) and non-Darcy coefficients (Kendall's tau = −0.76), and an inverse relationship was observed between hydraulic radius and Darcy coefficient. For example, the probability of the Darcy coefficient not exceeding 2 s/m, 20 s/m, and 100 s/m was 10 %, 50 %, and 80 %, respectively, for a hydraulic radius of 0.005 m. Furthermore, the strong correlation between Darcy and non-Darcy coefficients (Kendall's Tau = 0.67) enables the use of the former as a predictor for the latter. For a Darcy coefficient of 50 s/m, the probability of the non-Darcy coefficient not exceeding 300 s<sup>2</sup>/m<sup>2</sup> and 750 s<sup>2</sup>/m<sup>2</sup> was approximately 50 % and 75 %, respectively. This approach provides designers and engineers with a probabilistic framework for selecting hydraulic parameter values with varying degrees of confidence. It offers practical applications in the design of hydraulic structures, such as rockfill dams, and in estimating discharge through fractures, allowing for more reliable assessments of head loss and stability. The findings underscore the potential of copula models in enhancing the predictive accuracy and practicality of hydraulic analyses in porous media.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"460 ","pages":"Article 121069"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025004644","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting hydraulic parameters in porous media, such as Darcy and non-Darcy coefficients, is critical for understanding flow dynamics and designing hydraulic structures. This study develops a stochastic modelling framework using bivariate copula models to estimate these parameters, leveraging easily measurable quantities like packing diameter etc. A synthetic dataset, derived from experimental distributions reported in the literature, was utilized to overcome challenges associated with direct data collection. The analysis revealed that hydraulic radius is strongly correlated with Darcy (Kendall's tau = −0.74) and non-Darcy coefficients (Kendall's tau = −0.76), and an inverse relationship was observed between hydraulic radius and Darcy coefficient. For example, the probability of the Darcy coefficient not exceeding 2 s/m, 20 s/m, and 100 s/m was 10 %, 50 %, and 80 %, respectively, for a hydraulic radius of 0.005 m. Furthermore, the strong correlation between Darcy and non-Darcy coefficients (Kendall's Tau = 0.67) enables the use of the former as a predictor for the latter. For a Darcy coefficient of 50 s/m, the probability of the non-Darcy coefficient not exceeding 300 s2/m2 and 750 s2/m2 was approximately 50 % and 75 %, respectively. This approach provides designers and engineers with a probabilistic framework for selecting hydraulic parameter values with varying degrees of confidence. It offers practical applications in the design of hydraulic structures, such as rockfill dams, and in estimating discharge through fractures, allowing for more reliable assessments of head loss and stability. The findings underscore the potential of copula models in enhancing the predictive accuracy and practicality of hydraulic analyses in porous media.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.