Muhammad Adil Riaz, Panagiotis Trogadas, David Aymé-Perrot, Christoph Sachs, Nicolas Dubouis, Hubert Girault, Marc-Olivier Coppens
{"title":"Water electrolysis technologies: the importance of new cell designs and fundamental modelling to guide industrial-scale development","authors":"Muhammad Adil Riaz, Panagiotis Trogadas, David Aymé-Perrot, Christoph Sachs, Nicolas Dubouis, Hubert Girault, Marc-Olivier Coppens","doi":"10.1039/d4ee05559d","DOIUrl":null,"url":null,"abstract":"Large-scale, sustainable, low-cost production of hydrogen can reduce the negative effects of climate change by decarbonising energy infrastructure. Low-carbon hydrogen can be synthesised via water electrolysis. Today, however, this only constitutes a minor proportion of global hydrogen production, as fossil fuel-based processes are used predominantly with large amounts of carbon emissions. Low-temperature electrolysis (< 100 ºC) has garnered significant attention, due to lower capital cost and operational complexity than high-temperature electrolysis (> 700 ºC). In this review, the latest advancements in low-temperature water electrolysers are provided from the current-generation, membrane-based designs to the next-generation membrane-less designs. The coverage of electrodes by gas bubbles can cause a drastic loss in their activity and, hence, the hydrogen production efficiency of the device. To alleviate this issue, aerophobic and aerophilic electrodes are being developed. Their advantageous properties are discussed. Furthermore, models of water electrolysers are reviewed to provide critical understanding of the different parameters affecting the electrochemical performance of these devices. Finally, an industrial perspective is given to discuss the challenges in large-scale Gigawatt-level deployment of these devices in coming decades to meet future green hydrogen demand.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee05559d","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale, sustainable, low-cost production of hydrogen can reduce the negative effects of climate change by decarbonising energy infrastructure. Low-carbon hydrogen can be synthesised via water electrolysis. Today, however, this only constitutes a minor proportion of global hydrogen production, as fossil fuel-based processes are used predominantly with large amounts of carbon emissions. Low-temperature electrolysis (< 100 ºC) has garnered significant attention, due to lower capital cost and operational complexity than high-temperature electrolysis (> 700 ºC). In this review, the latest advancements in low-temperature water electrolysers are provided from the current-generation, membrane-based designs to the next-generation membrane-less designs. The coverage of electrodes by gas bubbles can cause a drastic loss in their activity and, hence, the hydrogen production efficiency of the device. To alleviate this issue, aerophobic and aerophilic electrodes are being developed. Their advantageous properties are discussed. Furthermore, models of water electrolysers are reviewed to provide critical understanding of the different parameters affecting the electrochemical performance of these devices. Finally, an industrial perspective is given to discuss the challenges in large-scale Gigawatt-level deployment of these devices in coming decades to meet future green hydrogen demand.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).