Calcium-activated chloride channel TMEM16A opens via pi-helical transition in transmembrane segment 4

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Andrei Y. Kostritskii, Yulia Kostritskaia, Natalia Dmitrieva, Tobias Stauber, Jan-Philipp Machtens
{"title":"Calcium-activated chloride channel TMEM16A opens via pi-helical transition in transmembrane segment 4","authors":"Andrei Y. Kostritskii, Yulia Kostritskaia, Natalia Dmitrieva, Tobias Stauber, Jan-Philipp Machtens","doi":"10.1073/pnas.2421900122","DOIUrl":null,"url":null,"abstract":"TMEM16A is a Ca <jats:sup>2+</jats:sup> -activated Cl <jats:sup>−</jats:sup> channel that has crucial roles in various physiological and pathological processes. However, the structure of the open state of the channel and the mechanism of Ca <jats:sup>2+</jats:sup> -induced pore opening have remained elusive. Using extensive molecular dynamics simulations, protein structure prediction, and patch-clamp electrophysiology, we demonstrate that TMEM16A opens a hydrated Cl <jats:sup>−</jats:sup> -conductive pore via a pi-helical transition in transmembrane segment 4 (TM4). We also describe a coupling mechanism that links pi-helical transition and pore opening to the Ca <jats:sup>2+</jats:sup> -induced conformational changes in TMEM16A. Furthermore, we designed a pi-helix-stabilizing mutation (I551P) that facilitates TMEM16A activation, revealing atomistic details of the ion-conduction mechanism. Finally, AlphaFold2 structure predictions revealed the importance of the pi helix in TM4 to structure–function relations in TMEM16 and the related OSCA/TMEM63 family, further highlighting the relevance of dynamic pi helices for gating in various ion channels.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"43 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2421900122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

TMEM16A is a Ca 2+ -activated Cl channel that has crucial roles in various physiological and pathological processes. However, the structure of the open state of the channel and the mechanism of Ca 2+ -induced pore opening have remained elusive. Using extensive molecular dynamics simulations, protein structure prediction, and patch-clamp electrophysiology, we demonstrate that TMEM16A opens a hydrated Cl -conductive pore via a pi-helical transition in transmembrane segment 4 (TM4). We also describe a coupling mechanism that links pi-helical transition and pore opening to the Ca 2+ -induced conformational changes in TMEM16A. Furthermore, we designed a pi-helix-stabilizing mutation (I551P) that facilitates TMEM16A activation, revealing atomistic details of the ion-conduction mechanism. Finally, AlphaFold2 structure predictions revealed the importance of the pi helix in TM4 to structure–function relations in TMEM16 and the related OSCA/TMEM63 family, further highlighting the relevance of dynamic pi helices for gating in various ion channels.
钙激活的氯离子通道TMEM16A通过跨膜段4的pi-螺旋过渡打开
TMEM16A是ca2 +激活的Cl -通道,在各种生理和病理过程中起重要作用。然而,通道开放状态的结构和ca2 +诱导开孔的机制仍然是未知的。通过广泛的分子动力学模拟、蛋白质结构预测和膜片钳电生理学,我们证明了TMEM16A通过跨膜段4 (TM4)的pi-螺旋转变打开了一个水合Cl−导电孔。我们还描述了一种耦合机制,该机制将pi螺旋转变和孔隙打开与ca2 +诱导的TMEM16A构象变化联系起来。此外,我们设计了一个pi-螺旋稳定突变(I551P),促进了TMEM16A的激活,揭示了离子传导机制的原子细节。最后,AlphaFold2结构预测揭示了TM4中pi螺旋对TMEM16和相关的OSCA/TMEM63家族结构-功能关系的重要性,进一步强调了动态pi螺旋对各种离子通道门通的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信