{"title":"Advanced Industrial-Grade Carbon-Fiber-Reinforced Geopolymer Cement Supercapacitors for Building-Integrated Energy Storage Solutions","authors":"Ji-Hua Zhu, Xiangfei Wang, Hongtao Yu, Shuxia Liu, Chun Pei, Feng Xing","doi":"10.1016/j.cemconcomp.2025.106106","DOIUrl":null,"url":null,"abstract":"The integration of energy storage capabilities into building materials represents a revolutionary advancement in sustainable energy solutions. This study introduces and explores a carbon-fiber-reinforced cementitious supercapacitor, marking a pioneering step in leveraging construction materials for dual structural and energy storage purposes. Employing geopolymer cement (GC) as a solid electrolyte and polyacrylonitrile (PAN)-based carbon fibers (CFs) as electrode materials, this novel supercapacitor exhibited electrochemical properties superior to those of conventional building materials. Electrochemical modification of CFs proved to be effective in significantly enhancing the performance of the cement-based supercapacitor, with the areal capacitance increasing from 1.6 mF cm<sup>−2</sup> to an impressive 86 mF cm<sup>−2</sup>. The optimized supercapacitor achieved remarkable energy and power densities of 17.2 μWh cm<sup>−2</sup> and 600 μW cm<sup>−2</sup>, respectively, at a current density of 1 mA cm<sup>−2</sup>. The energy density achieved is comparable to that of cement-based batteries. This innovative approach to supercapacitor fabrication not only validates the potential of supercapacitor technology in augmenting the energy storage capabilities of buildings but also enhances the multifunctionality of carbon-fiber-reinforced cementitious materials. Our findings herald a new era in sustainable construction in which structural integrity and energy efficiency will coalesce, paving the way for the next generation of smart energy-resilient infrastructures.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2025.106106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of energy storage capabilities into building materials represents a revolutionary advancement in sustainable energy solutions. This study introduces and explores a carbon-fiber-reinforced cementitious supercapacitor, marking a pioneering step in leveraging construction materials for dual structural and energy storage purposes. Employing geopolymer cement (GC) as a solid electrolyte and polyacrylonitrile (PAN)-based carbon fibers (CFs) as electrode materials, this novel supercapacitor exhibited electrochemical properties superior to those of conventional building materials. Electrochemical modification of CFs proved to be effective in significantly enhancing the performance of the cement-based supercapacitor, with the areal capacitance increasing from 1.6 mF cm−2 to an impressive 86 mF cm−2. The optimized supercapacitor achieved remarkable energy and power densities of 17.2 μWh cm−2 and 600 μW cm−2, respectively, at a current density of 1 mA cm−2. The energy density achieved is comparable to that of cement-based batteries. This innovative approach to supercapacitor fabrication not only validates the potential of supercapacitor technology in augmenting the energy storage capabilities of buildings but also enhances the multifunctionality of carbon-fiber-reinforced cementitious materials. Our findings herald a new era in sustainable construction in which structural integrity and energy efficiency will coalesce, paving the way for the next generation of smart energy-resilient infrastructures.