{"title":"A live bacteria enzyme assay for identification of human disease mutations and drug screening","authors":"Donghui Choe, Bernhard O. Palsson","doi":"10.1038/s41551-025-01391-y","DOIUrl":null,"url":null,"abstract":"<p>Advances in high-throughput sequencing have enabled the identification of genetic variations associated with human disease. However, deciphering the functional significance of these variations remains challenging. Here we propose an alternative approach that uses humanized <i>Escherichia coli</i> to study human genetic enzymopathies and to screen candidate drug effects on metabolic targets. By replacing selected <i>E. coli</i> metabolic enzymes with their human orthologues and their sequence variants, we demonstrate that the growth rate of <i>E. coli</i> reflects the in vivo activity of heterologously expressed human enzymes. This approach accurately reflected enzyme activities of known sequence variants, enabling rapid screening of causal sequence variations associated with human diseases. This approach bridges the gap between in vitro assays and cell-based assays. Our findings suggest that the proposed approach using a humanized <i>E. coli</i> strain holds promise for drug discovery, offering a high-throughput and cost-effective platform for identifying new compounds targeting human enzymes. Continued research and innovation in this field have the potential to impact the development and practice of precision medicine.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"35 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01391-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in high-throughput sequencing have enabled the identification of genetic variations associated with human disease. However, deciphering the functional significance of these variations remains challenging. Here we propose an alternative approach that uses humanized Escherichia coli to study human genetic enzymopathies and to screen candidate drug effects on metabolic targets. By replacing selected E. coli metabolic enzymes with their human orthologues and their sequence variants, we demonstrate that the growth rate of E. coli reflects the in vivo activity of heterologously expressed human enzymes. This approach accurately reflected enzyme activities of known sequence variants, enabling rapid screening of causal sequence variations associated with human diseases. This approach bridges the gap between in vitro assays and cell-based assays. Our findings suggest that the proposed approach using a humanized E. coli strain holds promise for drug discovery, offering a high-throughput and cost-effective platform for identifying new compounds targeting human enzymes. Continued research and innovation in this field have the potential to impact the development and practice of precision medicine.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.