David S. Galstyan, Tatyana O. Kolesnikova, Konstantin A. Demin, Yaroslav A. Dubrovskii, Ekaterina Murashko, Elizaveta Kessenikh, Nikita P. Ilyin, Aleksey N. Ikrin, Anastasia M. Moskalenko, Murilo S. de Abreu, Longen Yang, Allan V. Kalueff
{"title":"Intranasal delivery of drugs to the central nervous system of adult zebrafish","authors":"David S. Galstyan, Tatyana O. Kolesnikova, Konstantin A. Demin, Yaroslav A. Dubrovskii, Ekaterina Murashko, Elizaveta Kessenikh, Nikita P. Ilyin, Aleksey N. Ikrin, Anastasia M. Moskalenko, Murilo S. de Abreu, Longen Yang, Allan V. Kalueff","doi":"10.1038/s41684-025-01545-0","DOIUrl":null,"url":null,"abstract":"<p>The small teleost zebrafish (<i>Danio rerio</i>) has become a critically important laboratory animal in biomedicine. One of their key practical advantages, the convenient method of small-molecule administration via water immersion, has certain problems with dosing precision and drug delivery. Here, we present a simple protocol for the intranasal delivery of neuroactive drugs in adult zebrafish using arecoline and nicotine, two well-studied reference neuroactive drugs chosen for the proof of concept. Adult fish received 1 μL water solution of arecoline (1 and 10 mg/mL) or nicotine tartrate (5 and 10 mg/mL) or the same volume of drug-free water (control) into both nostrils, followed by behavioral testing in the novel tank test 5 min later. Mass spectrometry analyses confirmed that both drugs rapidly reached the zebrafish brain following intranasal administration. Intranasally administered arecoline (10 mg/mL) and nicotine (5 and 10 mg/mL) demonstrated overt behavioral profiles, evoking characteristic anxiolytic-like effects in zebrafish similar to those observed here for a standard 20-min water immersion method (10 mg/L arecoline or 30 mg/L nicotine). Overall, we showed that neuroactive drugs can be delivered to adult zebrafish intranasally to exert central effects, which may (at least for some drugs) occur faster and can need smaller drug quantities than for the water immersion delivery.</p>","PeriodicalId":17936,"journal":{"name":"Lab Animal","volume":"71 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab Animal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1038/s41684-025-01545-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The small teleost zebrafish (Danio rerio) has become a critically important laboratory animal in biomedicine. One of their key practical advantages, the convenient method of small-molecule administration via water immersion, has certain problems with dosing precision and drug delivery. Here, we present a simple protocol for the intranasal delivery of neuroactive drugs in adult zebrafish using arecoline and nicotine, two well-studied reference neuroactive drugs chosen for the proof of concept. Adult fish received 1 μL water solution of arecoline (1 and 10 mg/mL) or nicotine tartrate (5 and 10 mg/mL) or the same volume of drug-free water (control) into both nostrils, followed by behavioral testing in the novel tank test 5 min later. Mass spectrometry analyses confirmed that both drugs rapidly reached the zebrafish brain following intranasal administration. Intranasally administered arecoline (10 mg/mL) and nicotine (5 and 10 mg/mL) demonstrated overt behavioral profiles, evoking characteristic anxiolytic-like effects in zebrafish similar to those observed here for a standard 20-min water immersion method (10 mg/L arecoline or 30 mg/L nicotine). Overall, we showed that neuroactive drugs can be delivered to adult zebrafish intranasally to exert central effects, which may (at least for some drugs) occur faster and can need smaller drug quantities than for the water immersion delivery.
期刊介绍:
LabAnimal is a Nature Research journal dedicated to in vivo science and technology that improves our basic understanding and use of model organisms of human health and disease. In addition to basic research, methods and technologies, LabAnimal also covers important news, business and regulatory matters that impact the development and application of model organisms for preclinical research.
LabAnimal's focus is on innovative in vivo methods, research and technology covering a wide range of model organisms. Our broad scope ensures that the work we publish reaches the widest possible audience. LabAnimal provides a rigorous and fair peer review of manuscripts, high standards for copyediting and production, and efficient publication.