Frustrated Lewis Pairs Boosting Electrochemical Production of Hydrogen Peroxide on Bi-TiO2−x Nanocatalysts

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoling Yang, Lin Chen, Haibo Jiang, Jianhua Shen, Yihua Zhu, Chunzhong Li
{"title":"Frustrated Lewis Pairs Boosting Electrochemical Production of Hydrogen Peroxide on Bi-TiO2−x Nanocatalysts","authors":"Xiaoling Yang, Lin Chen, Haibo Jiang, Jianhua Shen, Yihua Zhu, Chunzhong Li","doi":"10.1002/adfm.202504833","DOIUrl":null,"url":null,"abstract":"Electrocatalytic two-electron oxygen reduction (2e<sup>−</sup> ORR) offers an environmentally friendly route for H<sub>2</sub>O<sub>2</sub> production, yet faces challenges in O<sub>2</sub> activation and *OOH intermediate stabilization. Here, Bi-TiO<sub>2−x</sub> nanocatalysts are introduced featuring frustrated Lewis acid-base pairs (FLPs) active sites, where the Bi single atoms with electron-deficient characteristics serve as Lewis acidic (LA) sites and the O atoms surrounding the oxygen vacancy (O<sub>V</sub>) act as Lewis basic (LB) sites. The Bi-TiO<sub>2−x</sub> catalyst exhibits high H<sub>2</sub>O<sub>2</sub> selectivity up to 96.5%. Furthermore, in a flowing electrolytic cell, the H<sub>2</sub>O<sub>2</sub> selectivity reaches 93.9% with a yield of 1.56 mol g<sub>catalyst</sub><sup>−1</sup> h<sup>−1</sup> at −50 mA cm<sup>−2</sup> and is able to maintain a stable reaction for 54 h. Theoretical calculations and in situ spectroscopic analyses indicate that the FLPs structure can effectively promote the dissociation of H<sub>2</sub>O and the activation of O<sub>2</sub> during the reaction, provide protons for the subsequent reaction, and facilitate the formation of *OOH intermediates. The coupling system of 2e<sup>−</sup> ORR with ethylene glycol oxidation significantly improves the selectivity of H<sub>2</sub>O<sub>2</sub> to 98.9% and the yield to 3.02 mol g<sub>catalyst</sub><sup>−1</sup> h<sup>−1</sup>, meanwhile, the anode simultaneously produces formic acid as a co-product, which improves the utilization of system resources.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"25 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202504833","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic two-electron oxygen reduction (2e ORR) offers an environmentally friendly route for H2O2 production, yet faces challenges in O2 activation and *OOH intermediate stabilization. Here, Bi-TiO2−x nanocatalysts are introduced featuring frustrated Lewis acid-base pairs (FLPs) active sites, where the Bi single atoms with electron-deficient characteristics serve as Lewis acidic (LA) sites and the O atoms surrounding the oxygen vacancy (OV) act as Lewis basic (LB) sites. The Bi-TiO2−x catalyst exhibits high H2O2 selectivity up to 96.5%. Furthermore, in a flowing electrolytic cell, the H2O2 selectivity reaches 93.9% with a yield of 1.56 mol gcatalyst−1 h−1 at −50 mA cm−2 and is able to maintain a stable reaction for 54 h. Theoretical calculations and in situ spectroscopic analyses indicate that the FLPs structure can effectively promote the dissociation of H2O and the activation of O2 during the reaction, provide protons for the subsequent reaction, and facilitate the formation of *OOH intermediates. The coupling system of 2e ORR with ethylene glycol oxidation significantly improves the selectivity of H2O2 to 98.9% and the yield to 3.02 mol gcatalyst−1 h−1, meanwhile, the anode simultaneously produces formic acid as a co-product, which improves the utilization of system resources.

Abstract Image

受挫Lewis对促进Bi-TiO2−x纳米催化剂上过氧化氢的电化学生成
电催化双电子氧还原技术(2e - ORR)为生产H2O2提供了一种环保的途径,但在O2活化和*OOH中间体稳定性方面仍面临挑战。本文介绍了具有受挫Lewis酸碱对(FLPs)活性位点的Bi- tio2 - x纳米催化剂,其中具有缺电子特征的Bi单原子充当Lewis酸性(LA)位点,氧空位(OV)周围的O原子充当Lewis碱性(LB)位点。Bi-TiO2−x催化剂对H2O2的选择性高达96.5%。此外,在流动电解池中,在−50 mA cm−2条件下,H2O2选择性达到93.9%,产率为1.56 mol gcatalyst−1 h−1,并能保持54 h的稳定反应。理论计算和原位光谱分析表明,FLPs结构能有效地促进反应过程中H2O的解离和O2的活化,为后续反应提供质子,有利于*OOH中间体的形成。通过与乙二醇氧化的耦合体系,H2O2的选择性提高到98.9%,产率提高到3.02 mol gcatalyst - 1 h - 1,同时在阳极上生成甲酸作为副产物,提高了系统资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信