{"title":"Skin biocompatibility of hexagonal boron nitride: An in vitro study on HaCaT keratinocytes and 3D reconstructed human epidermis","authors":"Michela Carlin , Silvio Sosa , Viviana Jehová González , Aurelia Tubaro , Ester Vázquez , Maurizio Prato , Marco Pelin","doi":"10.1016/j.jhazmat.2025.138449","DOIUrl":null,"url":null,"abstract":"<div><div>Hexagonal boron nitride (hBN) is a promising two-dimensional (2D) material of interest to the scientific community and industry due to its revolutionary physico-chemical features. Skin contact is one of the most feasible exposure routes both for workers, producing hBN, and consumers, using hBN-enabled nanotechnologies. Hence, the toxic potential of hBN at the cutaneous level was evaluated following an <em>in vitro</em> approach with different degree of complexity, using a simplified cell model (HaCaT keratinocytes), and a more predictive and complete skin tissue (a 3D model of human epidermis). Despite its significant uptake by keratinocytes, hBN exerted only weak adverse effects, such as slight alterations of cells parameters indices of cytotoxicity (cell viability, cell mass and plasma membrane integrity) and mitochondrial-related dysfunctions (mitochondrial depolarization, ATP depletion and reactive oxygen species production), detectable only at high concentrations (>25 µg/mL) and mainly after a long exposure (72 h). In addition, adoption of the OECD TG 431 and 439 on the 3D reconstructed human epidermis model demonstrated hBN as a non-corrosive and non-irritant material, with an extremely low pro-inflammatory potential. These results denote a good biocompatibility of hBN at the skin level.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"494 ","pages":"Article 138449"},"PeriodicalIF":12.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425013640","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hexagonal boron nitride (hBN) is a promising two-dimensional (2D) material of interest to the scientific community and industry due to its revolutionary physico-chemical features. Skin contact is one of the most feasible exposure routes both for workers, producing hBN, and consumers, using hBN-enabled nanotechnologies. Hence, the toxic potential of hBN at the cutaneous level was evaluated following an in vitro approach with different degree of complexity, using a simplified cell model (HaCaT keratinocytes), and a more predictive and complete skin tissue (a 3D model of human epidermis). Despite its significant uptake by keratinocytes, hBN exerted only weak adverse effects, such as slight alterations of cells parameters indices of cytotoxicity (cell viability, cell mass and plasma membrane integrity) and mitochondrial-related dysfunctions (mitochondrial depolarization, ATP depletion and reactive oxygen species production), detectable only at high concentrations (>25 µg/mL) and mainly after a long exposure (72 h). In addition, adoption of the OECD TG 431 and 439 on the 3D reconstructed human epidermis model demonstrated hBN as a non-corrosive and non-irritant material, with an extremely low pro-inflammatory potential. These results denote a good biocompatibility of hBN at the skin level.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.