A chip-integrated comb-based microwave oscillator

IF 20.6 Q1 OPTICS
Wei Sun, Zhiyang Chen, Linze Li, Chen Shen, Kunpeng Yu, Shichang Li, Jinbao Long, Huamin Zheng, Luyu Wang, Tianyu Long, Qiushi Chen, Zhouze Zhang, Baoqi Shi, Lan Gao, Yi-Han Luo, Baile Chen, Junqiu Liu
{"title":"A chip-integrated comb-based microwave oscillator","authors":"Wei Sun, Zhiyang Chen, Linze Li, Chen Shen, Kunpeng Yu, Shichang Li, Jinbao Long, Huamin Zheng, Luyu Wang, Tianyu Long, Qiushi Chen, Zhouze Zhang, Baoqi Shi, Lan Gao, Yi-Han Luo, Baile Chen, Junqiu Liu","doi":"10.1038/s41377-025-01795-0","DOIUrl":null,"url":null,"abstract":"<p>Low-noise microwave oscillators are cornerstones for wireless communication, radar and clocks. The employment and optimization of optical frequency combs have enabled photonic microwave synthesizers with unrivalled noise performance and bandwidth breaking the bottleneck of those electronic counterparts. Emerging interest is to use chip-based Kerr frequency combs, namely microcombs. Today microcombs built on photonic integrated circuits feature small size, weight and power consumption, and can be manufactured to oscillate at any frequency ranging from microwave to millimeter-wave band. A monolithic microcomb-based microwave oscillator requires integration of lasers, photodetectors and nonlinear microresonators on a common substrate, which however has still remained elusive. Here, we demonstrate the first, fully hybrid-integrated, microcomb-based microwave oscillator at 10.7 GHz. The chip device, powered by a customized microelectronic circuit, leverages hybrid integration of a high-power DFB laser, a silicon nitride microresonator of a quality factor exceeding 25 × 10<sup>6</sup>, and a high-speed photodetector chip of 110 GHz bandwidth (3 dB) and 0.3 A/W responsivity. Each component represents the state of the art of its own class, yet also allows large-volume manufacturing with low cost using established CMOS and III-V foundries. The hybrid chip outputs an ultralow-noise laser of 6.9 Hz intrinsic linewidth, a coherent microcomb of 10.7 GHz repetition rate, and a 10.7 GHz microwave carrier of 6.3 mHz linewidth – all the three functions in one entity occupying a footprint of only 76 mm<sup>2</sup>. Furthermore, harnessing the nonlinear laser-microresonator interaction, we observe and maneuver a unique noise-quenching dynamics within discrete microcomb states, which offers immunity to laser current noise, suppression of microwave phase noise by more than 20 dB, and improvement of microwave power by up to 10 dB. The ultimate microwave phase noise reaches −75/−105/−130 dBc/Hz at 1/10/100 kHz Fourier offset frequency. Our results can reinvigorate our information society for communication, sensing, imaging, timing and precision measurement.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"41 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01795-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Low-noise microwave oscillators are cornerstones for wireless communication, radar and clocks. The employment and optimization of optical frequency combs have enabled photonic microwave synthesizers with unrivalled noise performance and bandwidth breaking the bottleneck of those electronic counterparts. Emerging interest is to use chip-based Kerr frequency combs, namely microcombs. Today microcombs built on photonic integrated circuits feature small size, weight and power consumption, and can be manufactured to oscillate at any frequency ranging from microwave to millimeter-wave band. A monolithic microcomb-based microwave oscillator requires integration of lasers, photodetectors and nonlinear microresonators on a common substrate, which however has still remained elusive. Here, we demonstrate the first, fully hybrid-integrated, microcomb-based microwave oscillator at 10.7 GHz. The chip device, powered by a customized microelectronic circuit, leverages hybrid integration of a high-power DFB laser, a silicon nitride microresonator of a quality factor exceeding 25 × 106, and a high-speed photodetector chip of 110 GHz bandwidth (3 dB) and 0.3 A/W responsivity. Each component represents the state of the art of its own class, yet also allows large-volume manufacturing with low cost using established CMOS and III-V foundries. The hybrid chip outputs an ultralow-noise laser of 6.9 Hz intrinsic linewidth, a coherent microcomb of 10.7 GHz repetition rate, and a 10.7 GHz microwave carrier of 6.3 mHz linewidth – all the three functions in one entity occupying a footprint of only 76 mm2. Furthermore, harnessing the nonlinear laser-microresonator interaction, we observe and maneuver a unique noise-quenching dynamics within discrete microcomb states, which offers immunity to laser current noise, suppression of microwave phase noise by more than 20 dB, and improvement of microwave power by up to 10 dB. The ultimate microwave phase noise reaches −75/−105/−130 dBc/Hz at 1/10/100 kHz Fourier offset frequency. Our results can reinvigorate our information society for communication, sensing, imaging, timing and precision measurement.

Abstract Image

一种芯片集成的梳状微波振荡器
低噪声微波振荡器是无线通信、雷达和时钟的基础。光学频率梳的使用和优化使得光子微波合成器具有无与伦比的噪声性能和带宽,打破了电子合成器的瓶颈。新兴的兴趣是使用基于芯片的克尔频率梳,即微型梳。如今,基于光子集成电路的微型梳子具有体积小、重量轻、功耗小的特点,并且可以在从微波到毫米波的任何频率上振荡。基于微梳的单片微波振荡器需要将激光器、光电探测器和非线性微谐振器集成在一个共同的衬底上,然而这仍然是难以实现的。在这里,我们展示了第一个完全混合集成的10.7 GHz微波振荡器。该芯片由定制的微电子电路供电,利用高功率DFB激光器、质量因数超过25 × 106的氮化硅微谐振器和110 GHz带宽(3 dB)和0.3 a /W响应的高速光电探测器芯片的混合集成。每个组件都代表了其各自类别的最先进水平,但也允许使用成熟的CMOS和III-V代工厂以低成本进行大批量生产。该混合芯片输出6.9 Hz固有线宽的超低噪声激光器、10.7 GHz重复频率的相干微梳和6.3 mHz线宽的10.7 GHz微波载波——所有这三种功能都集中在一个实体中,占用的占地面积仅为76 mm2。此外,利用非线性激光-微谐振器相互作用,我们观察并操纵了离散微梳状态下独特的灭噪动态,该动态可以抵抗激光电流噪声,抑制微波相位噪声超过20 dB,并将微波功率提高高达10 dB。在1/10/100 kHz傅里叶偏置频率下,微波相位噪声达到- 75/ - 105/ - 130 dBc/Hz。我们的研究结果可以为通信、传感、成像、定时和精密测量等信息社会注入新的活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信