Taming Spin Susceptibilities in Frustrated Quantum Magnets: Mean-Field Form and Approximate Nature of the Quantum-to-Classical Correspondence

IF 9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Benedikt Schneider, Björn Sbierski
{"title":"Taming Spin Susceptibilities in Frustrated Quantum Magnets: Mean-Field Form and Approximate Nature of the Quantum-to-Classical Correspondence","authors":"Benedikt Schneider, Björn Sbierski","doi":"10.1103/physrevlett.134.176502","DOIUrl":null,"url":null,"abstract":"In frustrated magnetism, the empirically found quantum-to-classical correspondence (QCC) matches the real-space static susceptibility pattern of a quantum spin-1</a:mn>/</a:mo>2</a:mn></a:math> model with its classical counterpart computed at a certain elevated temperature. This puzzling relation was observed via bold line diagrammatic Monte Carlo simulations in dimensions two and three. The matching was within error bars and seemed valid down to the lowest accessible temperatures <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>T</c:mi></c:math> about an order of magnitude smaller than the exchange coupling <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>J</e:mi></e:math>. Here, we employ resummed spin diagrammatic perturbation theory to show analytically that the QCC breaks weakly at fourth order in <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mi>J</g:mi><g:mo>/</g:mo><g:mi>T</g:mi></g:mrow></g:math> and provide the approximate mapping between classical and quantum temperatures. Our treatment further reveals that QCC is an indication of the surprising accuracy with which static correlators can be approximated by a simple renormalized mean-field form. We illustrate this for all models discussed in the context of QCC so far, including a recent example of the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mi>S</i:mi><i:mo>=</i:mo><i:mn>1</i:mn></i:mrow></i:math> material <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:msub><k:mrow><k:mi mathvariant=\"normal\">K</k:mi></k:mrow><k:mrow><k:mn>2</k:mn></k:mrow></k:msub><k:msub><k:mrow><k:mi>Ni</k:mi></k:mrow><k:mrow><k:mn>2</k:mn></k:mrow></k:msub><k:mo stretchy=\"false\">(</k:mo><k:msub><k:mrow><k:mi>SO</k:mi></k:mrow><k:mrow><k:mn>4</k:mn></k:mrow></k:msub><k:msub><k:mrow><k:mo stretchy=\"false\">)</k:mo></k:mrow><k:mrow><k:mn>3</k:mn></k:mrow></k:msub></k:mrow></k:math>. The success of the mean-field form is traced back to partial diagrammatic cancellations. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"19 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.176502","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In frustrated magnetism, the empirically found quantum-to-classical correspondence (QCC) matches the real-space static susceptibility pattern of a quantum spin-1/2 model with its classical counterpart computed at a certain elevated temperature. This puzzling relation was observed via bold line diagrammatic Monte Carlo simulations in dimensions two and three. The matching was within error bars and seemed valid down to the lowest accessible temperatures T about an order of magnitude smaller than the exchange coupling J. Here, we employ resummed spin diagrammatic perturbation theory to show analytically that the QCC breaks weakly at fourth order in J/T and provide the approximate mapping between classical and quantum temperatures. Our treatment further reveals that QCC is an indication of the surprising accuracy with which static correlators can be approximated by a simple renormalized mean-field form. We illustrate this for all models discussed in the context of QCC so far, including a recent example of the S=1 material K2Ni2(SO4)3. The success of the mean-field form is traced back to partial diagrammatic cancellations. Published by the American Physical Society 2025
受挫量子磁体中自旋磁化率的驯服:量子-经典对应的平均场形式和近似性质
在受挫磁中,经验发现的量子-经典对应(QCC)与量子自旋1/2模型的实空间静态磁化率模式相匹配,并在一定的升高温度下计算其经典对应。这种令人费解的关系是通过在二维和三维的大胆线图蒙特卡罗模拟观察到的。匹配在误差条内,并且似乎有效,直到最低可达温度T比交换耦合J小一个数量级。在这里,我们使用恢复自旋图摄动理论解析地证明了QCC在J/T中的四阶弱破缺,并提供了经典温度和量子温度之间的近似映射。我们的处理进一步揭示了QCC是静态相关器可以通过简单的重整化平均场形式近似的惊人精度的指示。到目前为止,我们在QCC上下文中讨论的所有模型中都说明了这一点,包括最近的S=1材料K2Ni2(SO4)3的例子。平均场形式的成功可以追溯到部分图的消去。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信