A Robust Method for Calculating Carbon Dioxide Emissions From Cities and Power Stations Using OCO-2 and S5P/TROPOMI Observations

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Janne Hakkarainen, Iolanda Ialongo, Tomohiro Oda, David Crisp
{"title":"A Robust Method for Calculating Carbon Dioxide Emissions From Cities and Power Stations Using OCO-2 and S5P/TROPOMI Observations","authors":"Janne Hakkarainen,&nbsp;Iolanda Ialongo,&nbsp;Tomohiro Oda,&nbsp;David Crisp","doi":"10.1029/2025JD043358","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new method for calculating the carbon dioxide (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math>) emissions from point sources (e.g., power stations) and cities using the cross-sectional flux method constrained by space-based <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> and nitrogen dioxide (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NO}}_{2}$</annotation>\n </semantics></math>) observations. First, we derive a proxy estimate for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> enhancements from <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NO}}_{2}$</annotation>\n </semantics></math> observations through linear regression near the plume cross-section. Then, we fit a Gaussian function to the resulting <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NO}}_{2}$</annotation>\n </semantics></math>-based <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> enhancement data. We apply this method to data from the Orbiting Carbon Observatory-2 (OCO-2) and the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (S5P/TROPOMI) starting from May 2018. The method is tested on the Matimba and Medupi power stations in South Africa, as well as the cities of Madrid (Spain), Las Vegas (USA), and Baghdad (Iraq). The corresponding mean <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> emission estimates are 49 <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math> 17 Mt/yr, 22 <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math> 10 Mt/yr, 30 <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math> 8 Mt/yr, and 41 <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math> 19 Mt/yr, respectively. The results show that the method is robust and can be applied to challenging cases where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>NO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{NO}}_{2}$</annotation>\n </semantics></math> data helps constrain the fit. The proxy approach allows evaluation of 17 additional scenes (out of 53), reducing the average error of individual emission estimates from approximately 30%–40% to 22%–25% compared with the traditional method. Furthermore, we highlight the significant potential of satellite data to uncover discrepancies in reported emission estimates, for example, by identifying under-reported or missing emission sources. The proposed approach can be extended to other case studies and applied to future satellite missions with joint <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n <mo>/</mo>\n <msub>\n <mtext>NO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}/{\\text{NO}}_{2}$</annotation>\n </semantics></math> observations, such as CO2M, GOSAT-GW, TanSat-2, and TANGO.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 9","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JD043358","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JD043358","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new method for calculating the carbon dioxide ( CO 2 ${\text{CO}}_{2}$ ) emissions from point sources (e.g., power stations) and cities using the cross-sectional flux method constrained by space-based CO 2 ${\text{CO}}_{2}$ and nitrogen dioxide ( NO 2 ${\text{NO}}_{2}$ ) observations. First, we derive a proxy estimate for CO 2 ${\text{CO}}_{2}$ enhancements from NO 2 ${\text{NO}}_{2}$ observations through linear regression near the plume cross-section. Then, we fit a Gaussian function to the resulting NO 2 ${\text{NO}}_{2}$ -based CO 2 ${\text{CO}}_{2}$ enhancement data. We apply this method to data from the Orbiting Carbon Observatory-2 (OCO-2) and the Sentinel-5 Precursor TROPOspheric Monitoring Instrument (S5P/TROPOMI) starting from May 2018. The method is tested on the Matimba and Medupi power stations in South Africa, as well as the cities of Madrid (Spain), Las Vegas (USA), and Baghdad (Iraq). The corresponding mean CO 2 ${\text{CO}}_{2}$ emission estimates are 49  ± $\pm $  17 Mt/yr, 22  ± $\pm $  10 Mt/yr, 30  ± $\pm $  8 Mt/yr, and 41  ± $\pm $  19 Mt/yr, respectively. The results show that the method is robust and can be applied to challenging cases where NO 2 ${\text{NO}}_{2}$ data helps constrain the fit. The proxy approach allows evaluation of 17 additional scenes (out of 53), reducing the average error of individual emission estimates from approximately 30%–40% to 22%–25% compared with the traditional method. Furthermore, we highlight the significant potential of satellite data to uncover discrepancies in reported emission estimates, for example, by identifying under-reported or missing emission sources. The proposed approach can be extended to other case studies and applied to future satellite missions with joint CO 2 / NO 2 ${\text{CO}}_{2}/{\text{NO}}_{2}$ observations, such as CO2M, GOSAT-GW, TanSat-2, and TANGO.

Abstract Image

利用OCO-2和S5P/TROPOMI观测值计算城市和发电站二氧化碳排放量的稳健方法
本文介绍了一种计算点源(例如:利用天基CO 2 ${\text{CO}}_{2}$和二氧化氮(no2 ${\text{NO}}_{2}$)约束的截面通量法对电站和城市进行模拟)观察。首先,通过羽流附近的线性回归,我们得到了CO 2 ${\text{CO}}_{2}$增强的代理估计,该估计来自于no2 ${\text{NO}}_{2}$观测值横截面。然后,我们对得到的基于CO 2 ${\text{NO}}_{2}$的增强数据拟合高斯函数。我们将该方法应用于2018年5月开始的轨道碳观测-2 (OCO-2)和哨兵-5对流层前体监测仪器(S5P/TROPOMI)的数据。该方法在南非的Matimba和Medupi发电站以及马德里(西班牙)、拉斯维加斯(美国)和巴格达(伊拉克)等城市进行了测试。相应的co2 {\text{CO}}_{2}$排放平均值估计为49±$\pm $ 17 Mt/年,22±$\pm $ 10 Mt/年,30±$\pm $ 8 Mt/年,41±$\pm $ 19 Mt/年。结果表明,该方法具有良好的鲁棒性,可以应用于no2 ${\text{NO}}_{2}$数据有助于约束拟合的挑战性情况。代理方法允许评估17个额外的场景(从53个场景中),与传统方法相比,将单个排放估计的平均误差从大约30%-40%降低到22%-25%。此外,我们强调卫星数据在发现报告的排放估计差异方面的巨大潜力,例如,通过识别少报或缺失的排放源。所提出的方法可以扩展到其他案例研究,并应用于未来具有co2 / NO 2 ${\text{CO}}_{2}/{\text{NO}}_{2}$观测数据的卫星任务,如co2、GOSAT-GW、TanSat-2和TANGO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信