{"title":"Robust Projections of Changing Precipitation Evenness in a Warming Climate","authors":"Hsin Hsu, Stephan Fueglistaler","doi":"10.1029/2025GL114953","DOIUrl":null,"url":null,"abstract":"<p>Global warming is expected to increase global mean precipitation by 2%–4%/K, but this increase may be uneven, leading to more flooding but also droughts. Utilizing the Gini index, a metric frequently used in economics, we analyze the evenness of precipitation distribution locally and globally from daily to annual-mean timescale in CMIP6 global warming simulations. Spatial evenness of daily precipitation decreases over land and ocean, tropics and extratropics. Changes in temporal evenness of local-daily precipitation show a complex geographic pattern. However, particularly over land, we show that a simple theoretical scaling explains this complexity to result from increased precipitation intensity scaling at about the Clausius-Clapeyron rate, and a local balance between changes in annual-mean precipitation and dry-day fraction. These results provide a novel perspective on the relation between global constraints on the hydrological cycle to regional precipitation changes independent of changes in the geographic distribution of precipitation.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL114953","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025GL114953","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Global warming is expected to increase global mean precipitation by 2%–4%/K, but this increase may be uneven, leading to more flooding but also droughts. Utilizing the Gini index, a metric frequently used in economics, we analyze the evenness of precipitation distribution locally and globally from daily to annual-mean timescale in CMIP6 global warming simulations. Spatial evenness of daily precipitation decreases over land and ocean, tropics and extratropics. Changes in temporal evenness of local-daily precipitation show a complex geographic pattern. However, particularly over land, we show that a simple theoretical scaling explains this complexity to result from increased precipitation intensity scaling at about the Clausius-Clapeyron rate, and a local balance between changes in annual-mean precipitation and dry-day fraction. These results provide a novel perspective on the relation between global constraints on the hydrological cycle to regional precipitation changes independent of changes in the geographic distribution of precipitation.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.