Luc Dendooven, Daniel Ramírez-Villanueva, Vanessa Romero-Yahuitl, Karla E. Zarco-González, Nilantha Hulugalle, Viliami Heimoana, Nele Verhulst, Bram Govaerts, Yendi E. Navarro-Noya
{"title":"Young maize plants impact the bacterial community in Australian cotton-sown vertisol more than agricultural practices","authors":"Luc Dendooven, Daniel Ramírez-Villanueva, Vanessa Romero-Yahuitl, Karla E. Zarco-González, Nilantha Hulugalle, Viliami Heimoana, Nele Verhulst, Bram Govaerts, Yendi E. Navarro-Noya","doi":"10.1111/1758-2229.13322","DOIUrl":null,"url":null,"abstract":"<p>Changes in soil characteristics due to varying farming practices can modify the structure of bacterial communities. However, it remains uncertain whether bacterial groups that break down organic material are similarly impacted. We examined changes in the bacterial community by pyrosequencing the 16S rRNA gene when young maize plants, their neutral detergent fibre fraction, or urea were applied to an Australian Vertisol. This soil was managed with either conventional tillage with continuous cotton, minimum tillage with continuous cotton, or a wheat-cotton rotation. The soil organic carbon content was 1.4 times higher in the wheat-cotton rotation than in the conventional tillage with continuous cotton treatment. Approximately 41.6% of the organic carbon was added with maize plants, and 13.1% of the neutral detergent fibre fraction was mineralized after 28 days. The application of young maize plants and the neutral detergent fibre fraction significantly altered the bacterial community and the presumed metabolic functional structure, but urea did not. Many bacterial groups, such as <i>Streptomyces</i>, <i>Nocardioides</i>, and <i>Kribbella</i>, and presumed metabolic functions were enriched by the application of organic material, but less so by urea. We found that a limited number of bacterial groups and presumed metabolic functions were affected in an irrigated Vertisol by the different cotton farming systems, but many were strongly affected by the application of maize plants or its neutral detergent fibre.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.13322","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13322","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in soil characteristics due to varying farming practices can modify the structure of bacterial communities. However, it remains uncertain whether bacterial groups that break down organic material are similarly impacted. We examined changes in the bacterial community by pyrosequencing the 16S rRNA gene when young maize plants, their neutral detergent fibre fraction, or urea were applied to an Australian Vertisol. This soil was managed with either conventional tillage with continuous cotton, minimum tillage with continuous cotton, or a wheat-cotton rotation. The soil organic carbon content was 1.4 times higher in the wheat-cotton rotation than in the conventional tillage with continuous cotton treatment. Approximately 41.6% of the organic carbon was added with maize plants, and 13.1% of the neutral detergent fibre fraction was mineralized after 28 days. The application of young maize plants and the neutral detergent fibre fraction significantly altered the bacterial community and the presumed metabolic functional structure, but urea did not. Many bacterial groups, such as Streptomyces, Nocardioides, and Kribbella, and presumed metabolic functions were enriched by the application of organic material, but less so by urea. We found that a limited number of bacterial groups and presumed metabolic functions were affected in an irrigated Vertisol by the different cotton farming systems, but many were strongly affected by the application of maize plants or its neutral detergent fibre.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.