{"title":"Simple, Universal Rules Predict Trophic Interaction Strengths","authors":"Kyle E. Coblentz, Mark Novak, John P. DeLong","doi":"10.1111/ele.70126","DOIUrl":null,"url":null,"abstract":"<p>Many drivers of ecological systems exhibit regular scaling relationships, yet the mechanisms explaining these relationships are often unknown. Trophic interaction strengths are no exception, exhibiting scaling relationships with predator and prey traits that lack evolutionary explanations. We propose two rules to explain the scaling of trophic interaction strengths through the relationship between a predator's feeding rate and its prey's density—the so-called predator functional response. First, functional responses allow predators to meet their energetic demands when prey are rare. Second, functional responses approach their maxima near the highest prey densities predators experience. We show that equations derived from these rules predict functional response parameters across over 2100 functional response experiments and make additional predictions such as their allometric scaling. The two rules thereby offer a potential ultimate explanation for the determinants of trophic interaction strengths, revealing ecologically realised constraints to the complex, adaptive nature of functional response evolution.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 5","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70126","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many drivers of ecological systems exhibit regular scaling relationships, yet the mechanisms explaining these relationships are often unknown. Trophic interaction strengths are no exception, exhibiting scaling relationships with predator and prey traits that lack evolutionary explanations. We propose two rules to explain the scaling of trophic interaction strengths through the relationship between a predator's feeding rate and its prey's density—the so-called predator functional response. First, functional responses allow predators to meet their energetic demands when prey are rare. Second, functional responses approach their maxima near the highest prey densities predators experience. We show that equations derived from these rules predict functional response parameters across over 2100 functional response experiments and make additional predictions such as their allometric scaling. The two rules thereby offer a potential ultimate explanation for the determinants of trophic interaction strengths, revealing ecologically realised constraints to the complex, adaptive nature of functional response evolution.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.