Rania Hamed, Rafa Aburayya, Ahlam Zaid Alkilani, Alaa M. Hammad, Osama H. Abusara, Hadeel Abo-Zour
{"title":"Thermo-Responsive Niosomal In Situ Gels for Topical Delivery of Prednisolone","authors":"Rania Hamed, Rafa Aburayya, Ahlam Zaid Alkilani, Alaa M. Hammad, Osama H. Abusara, Hadeel Abo-Zour","doi":"10.1208/s12249-025-03105-8","DOIUrl":null,"url":null,"abstract":"<div><p>Prednisolone (PRD) is known for its anti-inflammatory effect on the skin. The study aimed to encapsulate PRD into niosomes and then load them into thermo-responsive <i>in situ</i> gels for skin inflammation to enhance drug stability, skin permeability, and patient compliance while minimizing systemic exposure. PRD was encapsulated into non-PEGylated and PEGylated niosomes and then loaded into thermo-responsive <i>in situ</i> gels. The non-PEGylated PRD niosomes exhibited a particle size (PS) of 354.3 ± 1.9 nm, a polydispersity index (PDI) of 0.3 ± 0.0, and a ζ-potential of - 19.4 ± 1.0 mV. While the PEGylated attained PS, PDI, and ζ-potential of 314.9 ± 4.2 nm, 0.1 ± 0.0, and - 34.6 ± 2.2 mV, respectively. In addition, PEGylated niosomes exhibited higher entrapment efficiency and drug loading than non-PEGylated niosomes. The loading of the non-PEGylated and PEGylated PRD niosomes into thermo-responsive <i>in situ</i> gel showed a phase transition (T<sub>sol→gel</sub>) at 34.1 ± 0.4 and 33.2 ± 0.9°C, respectively. The <i>in situ</i> gels showed a pseudoplastic flow with viscoelastic properties. The PRD niosomes and their corresponding <i>in situ</i> gels were biocompatible against human gingival fibroblasts. A decrease in rat paw inflammation was observed after applying the PRD niosomal gels. Stability studies for 3 months at 4°C showed that the PEGylated PRD niosomes and their corresponding <i>in situ</i> gel were more stable than the non-PEGylated PRD niosomes and their corresponding <i>in situ</i> gel. In conclusion, PEGylated PRD niosomal <i>in situ</i> gel demonstrated superior stability and sustained release, making it a promising candidate for topical corticosteroid therapy.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03105-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Prednisolone (PRD) is known for its anti-inflammatory effect on the skin. The study aimed to encapsulate PRD into niosomes and then load them into thermo-responsive in situ gels for skin inflammation to enhance drug stability, skin permeability, and patient compliance while minimizing systemic exposure. PRD was encapsulated into non-PEGylated and PEGylated niosomes and then loaded into thermo-responsive in situ gels. The non-PEGylated PRD niosomes exhibited a particle size (PS) of 354.3 ± 1.9 nm, a polydispersity index (PDI) of 0.3 ± 0.0, and a ζ-potential of - 19.4 ± 1.0 mV. While the PEGylated attained PS, PDI, and ζ-potential of 314.9 ± 4.2 nm, 0.1 ± 0.0, and - 34.6 ± 2.2 mV, respectively. In addition, PEGylated niosomes exhibited higher entrapment efficiency and drug loading than non-PEGylated niosomes. The loading of the non-PEGylated and PEGylated PRD niosomes into thermo-responsive in situ gel showed a phase transition (Tsol→gel) at 34.1 ± 0.4 and 33.2 ± 0.9°C, respectively. The in situ gels showed a pseudoplastic flow with viscoelastic properties. The PRD niosomes and their corresponding in situ gels were biocompatible against human gingival fibroblasts. A decrease in rat paw inflammation was observed after applying the PRD niosomal gels. Stability studies for 3 months at 4°C showed that the PEGylated PRD niosomes and their corresponding in situ gel were more stable than the non-PEGylated PRD niosomes and their corresponding in situ gel. In conclusion, PEGylated PRD niosomal in situ gel demonstrated superior stability and sustained release, making it a promising candidate for topical corticosteroid therapy.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.