Mingyuan Sun, Zhenxiao Yu, Shuai Wang, Jiaoyan Qiu, Yuzhen Huang, Xiaoshuang Chen, Yunhong Zhang, Chao Wang, Xue Zhang, Yanbo Liang, Hong Liu, Qunxin She, Yu Zhang, Lin Han
{"title":"Universal Amplification-Free RNA Detection by Integrating CRISPR-Cas10 with Aptameric Graphene Field-Effect Transistor","authors":"Mingyuan Sun, Zhenxiao Yu, Shuai Wang, Jiaoyan Qiu, Yuzhen Huang, Xiaoshuang Chen, Yunhong Zhang, Chao Wang, Xue Zhang, Yanbo Liang, Hong Liu, Qunxin She, Yu Zhang, Lin Han","doi":"10.1007/s40820-025-01730-3","DOIUrl":null,"url":null,"abstract":"<div><p>Amplification-free, highly sensitive, and specific nucleic acid detection is crucial for health monitoring and diagnosis. The type III CRISPR-Cas10 system, which provides viral immunity through CRISPR-associated protein effectors, enables a new amplification-free nucleic acid diagnostic tool. In this study, we develop a CRISPR-graphene field-effect transistors (GFETs) biosensor by combining the type III CRISPR-Cas10 system with GFETs for direct nucleic acid detection. This biosensor exploits the target RNA-activated continuous ssDNA cleavage activity of the dCsm3 CRISPR-Cas10 effector and the high charge density of a hairpin DNA reporter on the GFET channel to achieve label-free, amplification-free, highly sensitive, and specific RNA detection. The CRISPR-GFET biosensor exhibits excellent performance in detecting medium-length RNAs and miRNAs, with detection limits at the aM level and a broad linear range of 10<sup>−15</sup> to 10<sup>−11</sup> M for RNAs and 10<sup>−15</sup> to 10<sup>−9</sup> M for miRNAs. It shows high sensitivity in throat swabs and serum samples, distinguishing between healthy individuals (N = 5) and breast cancer patients (N = 6) without the need for extraction, purification, or amplification. This platform mitigates risks associated with nucleic acid amplification and cross-contamination, making it a versatile and scalable diagnostic tool for molecular diagnostics in human health.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01730-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01730-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Amplification-free, highly sensitive, and specific nucleic acid detection is crucial for health monitoring and diagnosis. The type III CRISPR-Cas10 system, which provides viral immunity through CRISPR-associated protein effectors, enables a new amplification-free nucleic acid diagnostic tool. In this study, we develop a CRISPR-graphene field-effect transistors (GFETs) biosensor by combining the type III CRISPR-Cas10 system with GFETs for direct nucleic acid detection. This biosensor exploits the target RNA-activated continuous ssDNA cleavage activity of the dCsm3 CRISPR-Cas10 effector and the high charge density of a hairpin DNA reporter on the GFET channel to achieve label-free, amplification-free, highly sensitive, and specific RNA detection. The CRISPR-GFET biosensor exhibits excellent performance in detecting medium-length RNAs and miRNAs, with detection limits at the aM level and a broad linear range of 10−15 to 10−11 M for RNAs and 10−15 to 10−9 M for miRNAs. It shows high sensitivity in throat swabs and serum samples, distinguishing between healthy individuals (N = 5) and breast cancer patients (N = 6) without the need for extraction, purification, or amplification. This platform mitigates risks associated with nucleic acid amplification and cross-contamination, making it a versatile and scalable diagnostic tool for molecular diagnostics in human health.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.