On the spectrum of supercyclic/hypercyclic operators

IF 0.8 Q2 MATHEMATICS
Pietro Aiena, Fabio Burderi, Salvatore Triolo
{"title":"On the spectrum of supercyclic/hypercyclic operators","authors":"Pietro Aiena,&nbsp;Fabio Burderi,&nbsp;Salvatore Triolo","doi":"10.1007/s43036-025-00437-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper concerns the spectral structure of hypercyclic and supercyclic operators defined on Banach spaces, or defined on Hilbert spaces. We also consider the spectral properties of operators in Hilbert spaces that commute with a hypercyclic operator. A result of Herrero and Kitai (Proc Am Math Soc 116(3):873–875, 1992) is extended to Drazin invertible operators. In particular, a Drazin invertible operator is hypercyclic if and only if is invertible. An analogous result holds for supercyclic operators <i>T</i> in the case were the dual <span>\\(T^*\\)</span> has empty point spectrum.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 3","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-025-00437-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-025-00437-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns the spectral structure of hypercyclic and supercyclic operators defined on Banach spaces, or defined on Hilbert spaces. We also consider the spectral properties of operators in Hilbert spaces that commute with a hypercyclic operator. A result of Herrero and Kitai (Proc Am Math Soc 116(3):873–875, 1992) is extended to Drazin invertible operators. In particular, a Drazin invertible operator is hypercyclic if and only if is invertible. An analogous result holds for supercyclic operators T in the case were the dual \(T^*\) has empty point spectrum.

关于超环/超环算子的谱
研究了Banach空间和Hilbert空间上的超环算子和超环算子的谱结构。我们还考虑了Hilbert空间中与超循环算子交换的算子的谱性质。Herrero和Kitai的结果(数学进展,116(3):873-875,1992)推广到Drazin可逆算子。特别地,Drazin可逆算子是超循环的当且仅当是可逆的。在对偶\(T^*\)有空点谱的情况下,超循环算子T也有类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信