Experimental Verification of the Model Dependence of the Turbulent Prandtl Number on the Gradient Richardson Number

IF 0.9 Q4 OPTICS
V. A. Banakh, I. N. Smalikho, I. V. Zaloznaya
{"title":"Experimental Verification of the Model Dependence of the Turbulent Prandtl Number on the Gradient Richardson Number","authors":"V. A. Banakh,&nbsp;I. N. Smalikho,&nbsp;I. V. Zaloznaya","doi":"10.1134/S1024856024701239","DOIUrl":null,"url":null,"abstract":"<p>A formula has been derived which connects the structural constant of temperature fluctuations with the dissipation rate of kinetic energy of turbulence not through the turbulent thermal diffusivity but through the vertical gradients of average wind velocity and air temperature and the turbulent Prandtl number. To estimate the structural constant of temperature using this formula, a model based on generalization of known data on the turbulent Prandtl number as a function of the gradient Richardson number is proposed. It has been experimentally shown that the time series of the structural constant of temperature, which is calculated using the proposed formula and independently found from the spectra of temperature fluctuations based on measurements of wind velocity and air temperature with sonic anemometers at two altitudes, are consistent with each other. This confirms correctness of the theoretical constructions the generalized results of which serve as the basis for the model dependence of the turbulent Prandtl number on the gradient Richardson number and opens possibilities of remote determination of the structural constant of temperature from measurements of wind velocity and temperature.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"38 1","pages":"12 - 17"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024701239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A formula has been derived which connects the structural constant of temperature fluctuations with the dissipation rate of kinetic energy of turbulence not through the turbulent thermal diffusivity but through the vertical gradients of average wind velocity and air temperature and the turbulent Prandtl number. To estimate the structural constant of temperature using this formula, a model based on generalization of known data on the turbulent Prandtl number as a function of the gradient Richardson number is proposed. It has been experimentally shown that the time series of the structural constant of temperature, which is calculated using the proposed formula and independently found from the spectra of temperature fluctuations based on measurements of wind velocity and air temperature with sonic anemometers at two altitudes, are consistent with each other. This confirms correctness of the theoretical constructions the generalized results of which serve as the basis for the model dependence of the turbulent Prandtl number on the gradient Richardson number and opens possibilities of remote determination of the structural constant of temperature from measurements of wind velocity and temperature.

湍流普朗特数对梯度理查德森数模型依赖性的实验验证
推导出了温度波动结构常数与湍流动能耗散率之间的关系式,该关系式不是通过湍流热扩散系数,而是通过平均风速和气温的垂直梯度以及湍流普朗特数。为了利用该公式估计温度的结构常数,提出了一个基于湍流普朗特数作为梯度理查德森数函数的已知数据的模型。实验表明,用该公式计算的温度结构常数的时间序列是相互一致的,这些温度结构常数是由声波风速仪在两个高度测量风速和气温的温度波动谱独立得出的。这证实了理论构造的正确性,其广义结果作为湍流普朗特数对梯度理查德森数的模型依赖的基础,并打开了从风速和温度测量中远程确定温度结构常数的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信