Effects of Conical Geometry on Approximate Solutions Under Modified Pöschl-Teller Potential and Shannon Entropy

IF 1.1 3区 物理与天体物理 Q4 PHYSICS, APPLIED
Faizuddin Ahmed, Abdelmalek Bouzenada, Allan R. P. Moreira
{"title":"Effects of Conical Geometry on Approximate Solutions Under Modified Pöschl-Teller Potential and Shannon Entropy","authors":"Faizuddin Ahmed,&nbsp;Abdelmalek Bouzenada,&nbsp;Allan R. P. Moreira","doi":"10.1007/s10909-025-03282-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the behavior of non-relativistic quantum particles interacting with a modified Pöschl-Teller potential in the backdrop of a topological defect created by global monopoles. We derive the radial equation of the Schrödinger wave equation through a wave function ansatz and obtain an approximate <span>\\(\\ell \\ne 0\\)</span>-state eigenvalue solution by employing the Nikiforov-Uvarov method. Our analysis demonstrates that the presence of a global monopole affects both the energy eigenvalue and the wave functions of non-relativistic quantum particles, deviating from the behavior observed in flat space with this potential. Furthermore, we calculate the Shannon entropy for this quantum system and evaluate how the existence of the topological defect and potential influences it.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"219 3-4","pages":"87 - 102"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-025-03282-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the behavior of non-relativistic quantum particles interacting with a modified Pöschl-Teller potential in the backdrop of a topological defect created by global monopoles. We derive the radial equation of the Schrödinger wave equation through a wave function ansatz and obtain an approximate \(\ell \ne 0\)-state eigenvalue solution by employing the Nikiforov-Uvarov method. Our analysis demonstrates that the presence of a global monopole affects both the energy eigenvalue and the wave functions of non-relativistic quantum particles, deviating from the behavior observed in flat space with this potential. Furthermore, we calculate the Shannon entropy for this quantum system and evaluate how the existence of the topological defect and potential influences it.

修正Pöschl-Teller势和Shannon熵下圆锥几何对近似解的影响
在这项研究中,我们研究了在全局单极子造成的拓扑缺陷的背景下,非相对论性量子粒子与修改Pöschl-Teller势相互作用的行为。通过波函数解析得到Schrödinger波动方程的径向方程,并采用Nikiforov-Uvarov方法得到\(\ell \ne 0\)状态特征值的近似解。我们的分析表明,全局单极子的存在影响了非相对论性量子粒子的能量特征值和波函数,偏离了在具有该势的平坦空间中观察到的行为。此外,我们计算了该量子系统的香农熵,并评估了拓扑缺陷和潜在缺陷的存在对其的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Low Temperature Physics
Journal of Low Temperature Physics 物理-物理:凝聚态物理
CiteScore
3.30
自引率
25.00%
发文量
245
审稿时长
1 months
期刊介绍: The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信