Complex Assessment of Air Composition over the Russian Arctic in September 2020

IF 0.9 Q4 OPTICS
P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, A. V. Fofonov
{"title":"Complex Assessment of Air Composition over the Russian Arctic in September 2020","authors":"P. N. Antokhin,&nbsp;V. G. Arshinova,&nbsp;M. Yu. Arshinov,&nbsp;B. D. Belan,&nbsp;S. B. Belan,&nbsp;D. K. Davydov,&nbsp;G. A. Ivlev,&nbsp;A. V. Kozlov,&nbsp;T. M. Rasskazchikova,&nbsp;D. E. Savkin,&nbsp;D. V. Simonenkov,&nbsp;T. K. Sklyadneva,&nbsp;G. N. Tolmachev,&nbsp;A. V. Fofonov","doi":"10.1134/S1024856024701264","DOIUrl":null,"url":null,"abstract":"<p>Сlimate warming in the Arctic is several times faster than in other regions of the globe. This сan be the result of strengthening of feedbacks between climate and atmospheric composition. However, there are very few data on changes in the concentration of climatically active substances in this region. Therefore, to fill the gap in data on the vertical distribution of gas and aerosol composition of air over the Russian Arctic, an airborne survey of the atmosphere and water surface over all the Russian Arctic Ocean seas was performed with use of the Tu-134 Optik aircraft laboratory in September 2020. This paper analyzes the spatial distribution of gas and aerosol composition in the Arctic troposphere. It is shown that during the experiment, the CO<sub>2</sub> mixing ratio increased in the near-water and boundary layers and decreased in the free troposphere from west to east. The methane content in the near-water layer decreased in the same direction. Concentrations of CO, NO<sub><i>X</i></sub>, and SO<sub>2</sub> in the Russian Arctic were very low, which was typical for remote background areas. All aerosol fractions also showed a decrease in their content from west to east.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"38 1","pages":"37 - 45"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024701264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Сlimate warming in the Arctic is several times faster than in other regions of the globe. This сan be the result of strengthening of feedbacks between climate and atmospheric composition. However, there are very few data on changes in the concentration of climatically active substances in this region. Therefore, to fill the gap in data on the vertical distribution of gas and aerosol composition of air over the Russian Arctic, an airborne survey of the atmosphere and water surface over all the Russian Arctic Ocean seas was performed with use of the Tu-134 Optik aircraft laboratory in September 2020. This paper analyzes the spatial distribution of gas and aerosol composition in the Arctic troposphere. It is shown that during the experiment, the CO2 mixing ratio increased in the near-water and boundary layers and decreased in the free troposphere from west to east. The methane content in the near-water layer decreased in the same direction. Concentrations of CO, NOX, and SO2 in the Russian Arctic were very low, which was typical for remote background areas. All aerosol fractions also showed a decrease in their content from west to east.

2020年9月俄罗斯北极上空空气成分的复杂评估
Сlimate北极变暖的速度是全球其他地区的几倍。这可能是气候和大气成分之间的反馈加强的结果。然而,关于该地区气候活性物质浓度变化的数据很少。因此,为了填补俄罗斯北极地区空气中气体和气溶胶成分垂直分布数据的空白,2020年9月,利用图-134 Optik飞机实验室对俄罗斯北冰洋所有海域的大气和水面进行了空中调查。本文分析了北极对流层气体和气溶胶组成的空间分布。结果表明,在实验过程中,CO2混合比在近水层和边界层中由西向东增加,在自由对流层中由西向东减少。近水层甲烷含量呈同一方向递减。俄罗斯北极地区CO、NOX和SO2的浓度非常低,这是偏远背景地区的典型特征。各气溶胶组分的含量也呈现自西向东递减的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信