{"title":"Theory and Design of Pseudo-Doherty Load-Modulated Double Balanced Amplifier With Intrinsic Insensitivity to Antenna VSWR","authors":"Jiachen Guo;Pingzhu Gong;Kenle Chen","doi":"10.1109/TCSI.2025.3543818","DOIUrl":null,"url":null,"abstract":"This paper presents a novel Double-Balanced power amplifier (PA) architecture with an intrinsic load isolation. Derived from the generic load modulated balanced amplifier (LMBA), by designing the single-ended control amplifier (CA) as another balanced PA, the Pseudo-Doherty load-modulated double-balanced amplifier (PD-LMDBA) can inherit the intrinsic load-mismatch tolerance of balanced amplifier without any reconfiguration and load-impedance sensing. Theoretical analysis reveals that both the control amplifier (CA, as carrier) and primary balanced amplifier (BA, as peaking) exhibit complementary load modulation trajectories for their sub-amplifiers (CA1 and CA2, BA1 and BA2) under mismatch. This allows the PA to inherit the intrinsic load insensitivity from the generic quadrature-balanced amplifier and sustain nearly constant performance against arbitrary load variations. A prototype is implemented at 2.1 GHz, achieving 76.2% efficiency at peak power and 69.5% at 10-dB OBO with matched load. Under a <inline-formula> <tex-math>$2:1$ </tex-math></inline-formula> voltage standing wave ratio (VSWR) of load mismatch, an efficiency up to 72.5% at peak power and 64.1% at 10-dB OBO are measured. In modulated evaluation with a 20-MHz OFDM signal, the PA maintains linearity against <inline-formula> <tex-math>$2:1$ </tex-math></inline-formula> VSWR, with 2.1% of error vector magnitude (EVM) and down to -39.5 dB adjacent channel power ratio (ACPR), closely approximating the matched condition.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 5","pages":"2048-2060"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10902511/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel Double-Balanced power amplifier (PA) architecture with an intrinsic load isolation. Derived from the generic load modulated balanced amplifier (LMBA), by designing the single-ended control amplifier (CA) as another balanced PA, the Pseudo-Doherty load-modulated double-balanced amplifier (PD-LMDBA) can inherit the intrinsic load-mismatch tolerance of balanced amplifier without any reconfiguration and load-impedance sensing. Theoretical analysis reveals that both the control amplifier (CA, as carrier) and primary balanced amplifier (BA, as peaking) exhibit complementary load modulation trajectories for their sub-amplifiers (CA1 and CA2, BA1 and BA2) under mismatch. This allows the PA to inherit the intrinsic load insensitivity from the generic quadrature-balanced amplifier and sustain nearly constant performance against arbitrary load variations. A prototype is implemented at 2.1 GHz, achieving 76.2% efficiency at peak power and 69.5% at 10-dB OBO with matched load. Under a $2:1$ voltage standing wave ratio (VSWR) of load mismatch, an efficiency up to 72.5% at peak power and 64.1% at 10-dB OBO are measured. In modulated evaluation with a 20-MHz OFDM signal, the PA maintains linearity against $2:1$ VSWR, with 2.1% of error vector magnitude (EVM) and down to -39.5 dB adjacent channel power ratio (ACPR), closely approximating the matched condition.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.