Temporal Logic-Guided DQN for Object Delivery and Transportation Using Magnetic Microrobots With Local Control

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Zhe Hou;Yueyue Liu;Qigao Fan
{"title":"Temporal Logic-Guided DQN for Object Delivery and Transportation Using Magnetic Microrobots With Local Control","authors":"Zhe Hou;Yueyue Liu;Qigao Fan","doi":"10.1109/LRA.2025.3560879","DOIUrl":null,"url":null,"abstract":"Microrobots driven by magnetic fields hold significant promise in medical applications, particularly in drug delivery–a key area in the biomedical field. Traditional approaches primarily rely on global magnetic fields to control single microrobots, which makes it challenging to independently control multiple microrobots. To address this limitation, this letter introduces a local magnetic field generation system that enables independent control of multiple microrobots. The proposed system employs a printed circuit board (PCB) array-based magnetic microrobot system, utilizing a microcoil array for precise and localized control. To enhance task execution, we integrate Deep Reinforcement Learning (DRL) with Linear Temporal Logic (LTL) to generate obstacle-avoiding paths for single and dual magnetic microrobots. The system is validated through magnetic droplet transport experiments. Experimental results demonstrate the effectiveness of the proposed system in achieving autonomous multi-task drug delivery and droplet fusion. This work underscores the potential of magnetic field-driven microcoil array systems in advancing transportation and drug delivery technologies in biomedical engineering.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5441-5448"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10964811/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Microrobots driven by magnetic fields hold significant promise in medical applications, particularly in drug delivery–a key area in the biomedical field. Traditional approaches primarily rely on global magnetic fields to control single microrobots, which makes it challenging to independently control multiple microrobots. To address this limitation, this letter introduces a local magnetic field generation system that enables independent control of multiple microrobots. The proposed system employs a printed circuit board (PCB) array-based magnetic microrobot system, utilizing a microcoil array for precise and localized control. To enhance task execution, we integrate Deep Reinforcement Learning (DRL) with Linear Temporal Logic (LTL) to generate obstacle-avoiding paths for single and dual magnetic microrobots. The system is validated through magnetic droplet transport experiments. Experimental results demonstrate the effectiveness of the proposed system in achieving autonomous multi-task drug delivery and droplet fusion. This work underscores the potential of magnetic field-driven microcoil array systems in advancing transportation and drug delivery technologies in biomedical engineering.
基于局部控制的磁性微机器人的时间逻辑引导DQN
由磁场驱动的微型机器人在医疗应用中有着重要的前景,特别是在药物输送方面——生物医学领域的一个关键领域。传统的控制方法主要依靠全局磁场来控制单个微型机器人,这给独立控制多个微型机器人带来了挑战。为了解决这一限制,这封信介绍了一个局部磁场产生系统,可以独立控制多个微型机器人。该系统采用基于印刷电路板(PCB)阵列的磁性微机器人系统,利用微线圈阵列进行精确和局部控制。为了提高任务执行能力,我们将深度强化学习(DRL)与线性时间逻辑(LTL)相结合,为单磁和双磁微型机器人生成避障路径。通过磁滴输运实验对该系统进行了验证。实验结果证明了该系统在实现自主多任务给药和液滴融合方面的有效性。这项工作强调了磁场驱动微线圈阵列系统在推进生物医学工程中的运输和药物输送技术方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信