Arkady G. Yastremskii;Sofia A. Yampolskaya;Yuri N. Panchenko
{"title":"Application of Cohen Distribution Functions for Time-Frequency Analysis of Chirped Laser Beams","authors":"Arkady G. Yastremskii;Sofia A. Yampolskaya;Yuri N. Panchenko","doi":"10.1109/JQE.2025.3558190","DOIUrl":null,"url":null,"abstract":"Based on the Cohen distribution function and physical spectrum concept, a new algorithm for numerical analysis of the time-frequency distribution of photon flux density of a chirped laser beam has been developed. This made it possible to use the well-known photon transport equation for modeling the evolution of not only spatial and energy, but also spectral characteristics of radiation in high-power laser systems. This approach allows us to solve the problem of “negative probability” arising when using the Wigner distribution function for non-Gaussian laser beams. Comparison of the obtained data with the results of experiments and numerical modeling of amplification of chirped laser beams in the XeF(C-A) gas amplifier of the THL-100 laser system proved applicability of the model.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 2","pages":"1-5"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10950361/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the Cohen distribution function and physical spectrum concept, a new algorithm for numerical analysis of the time-frequency distribution of photon flux density of a chirped laser beam has been developed. This made it possible to use the well-known photon transport equation for modeling the evolution of not only spatial and energy, but also spectral characteristics of radiation in high-power laser systems. This approach allows us to solve the problem of “negative probability” arising when using the Wigner distribution function for non-Gaussian laser beams. Comparison of the obtained data with the results of experiments and numerical modeling of amplification of chirped laser beams in the XeF(C-A) gas amplifier of the THL-100 laser system proved applicability of the model.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.