Depth Completion With Super-Resolution and Cross-Modality Optimization

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Ju Zhong;Aimin Jiang;Chang Liu;Ning Xu;Yanping Zhu
{"title":"Depth Completion With Super-Resolution and Cross-Modality Optimization","authors":"Ju Zhong;Aimin Jiang;Chang Liu;Ning Xu;Yanping Zhu","doi":"10.1109/LRA.2025.3560860","DOIUrl":null,"url":null,"abstract":"Depth completion, the process of generating dense depth maps from sparse or incomplete data, is inherently challenging due to the variability in sensor types, environmental conditions, and the differences between data modalities. In this letter, we propose a novel framework for depth completion. First, we introduce an efficient depth estimation network capable of predicting relative depth from a single RGB image. Next, we design a depth super-resolution network that refines the predicted depth by using Fast Fourier Convolution (FFC) and Gradient-weighted Symmetric Feature Transmission (GSFT) modules. These modules upsample the depth map using high-resolution RGB guidance, effectively mitigating the cross-modality gap. Finally, a global optimization step fuses the upsampled depth with sparse ground truth to produce high-quality dense depth maps. Our unified approach enhances generalization across diverse datasets while avoiding overfitting to specific depth corruption patterns. The enhancement in depth resolution and accuracy are critical for robotic applications requiring precise spatial perception, such as localization and manipulation. Experimental results on NYU-Depth V2 and SUN RGB-D benchmarks demonstrate the superiority of our approach compared to state-of-the-art approaches.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5585-5592"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10965466/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Depth completion, the process of generating dense depth maps from sparse or incomplete data, is inherently challenging due to the variability in sensor types, environmental conditions, and the differences between data modalities. In this letter, we propose a novel framework for depth completion. First, we introduce an efficient depth estimation network capable of predicting relative depth from a single RGB image. Next, we design a depth super-resolution network that refines the predicted depth by using Fast Fourier Convolution (FFC) and Gradient-weighted Symmetric Feature Transmission (GSFT) modules. These modules upsample the depth map using high-resolution RGB guidance, effectively mitigating the cross-modality gap. Finally, a global optimization step fuses the upsampled depth with sparse ground truth to produce high-quality dense depth maps. Our unified approach enhances generalization across diverse datasets while avoiding overfitting to specific depth corruption patterns. The enhancement in depth resolution and accuracy are critical for robotic applications requiring precise spatial perception, such as localization and manipulation. Experimental results on NYU-Depth V2 and SUN RGB-D benchmarks demonstrate the superiority of our approach compared to state-of-the-art approaches.
具有超分辨率和跨模态优化的深度补全
深度补全,即从稀疏或不完整的数据生成密集深度图的过程,由于传感器类型、环境条件和数据模式之间的差异,具有固有的挑战性。在这封信中,我们提出了一个新的深度完井框架。首先,我们引入了一个有效的深度估计网络,能够从单个RGB图像中预测相对深度。接下来,我们设计了一个深度超分辨率网络,通过使用快速傅里叶卷积(FFC)和梯度加权对称特征传输(GSFT)模块来细化预测深度。这些模块使用高分辨率RGB引导对深度图进行采样,有效地减轻了跨模态差距。最后,全局优化步骤将上采样深度与稀疏地面真值融合,生成高质量的密集深度图。我们的统一方法增强了不同数据集的泛化,同时避免了对特定深度损坏模式的过度拟合。深度分辨率和精度的提高对于需要精确空间感知的机器人应用至关重要,例如定位和操作。在NYU-Depth V2和SUN RGB-D基准测试上的实验结果表明,与最先进的方法相比,我们的方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信