A Champion-Level Vision-Based Reinforcement Learning Agent for Competitive Racing in Gran Turismo 7

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Hojoon Lee;Takuma Seno;Jun Jet Tai;Kaushik Subramanian;Kenta Kawamoto;Peter Stone;Peter R. Wurman
{"title":"A Champion-Level Vision-Based Reinforcement Learning Agent for Competitive Racing in Gran Turismo 7","authors":"Hojoon Lee;Takuma Seno;Jun Jet Tai;Kaushik Subramanian;Kenta Kawamoto;Peter Stone;Peter R. Wurman","doi":"10.1109/LRA.2025.3560873","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting real-world applicability. To address this limitation, we introduce a vision-based autonomous racing agent that relies solely on ego-centric camera views and onboard sensor data, eliminating the need for precise localization during inference. This agent employs an asymmetric actor-critic framework: the actor uses a recurrent neural network with the sensor data local to the car to retain track layouts and opponent positions, while the critic accesses the global features during training. Evaluated in GT7, our agent consistently outperforms GT7’s built-drivers. To our knowledge, this work presents the first vision-based autonomous racing agent to demonstrate champion-level performance in competitive racing scenarios.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5545-5552"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10964853/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting real-world applicability. To address this limitation, we introduce a vision-based autonomous racing agent that relies solely on ego-centric camera views and onboard sensor data, eliminating the need for precise localization during inference. This agent employs an asymmetric actor-critic framework: the actor uses a recurrent neural network with the sensor data local to the car to retain track layouts and opponent positions, while the critic accesses the global features during training. Evaluated in GT7, our agent consistently outperforms GT7’s built-drivers. To our knowledge, this work presents the first vision-based autonomous racing agent to demonstrate champion-level performance in competitive racing scenarios.
《Gran Turismo 7》中基于视觉的强化学习代理
深度强化学习已经在像《gt赛车7》(GT7)这样的高保真模拟器中实现了超人的赛车性能。它通常利用全局特性,这些特性需要汽车外部的仪表,比如对代理和对手的精确定位,从而限制了现实世界的适用性。为了解决这一限制,我们引入了一种基于视觉的自动赛车代理,它完全依赖于以自我为中心的摄像头视图和车载传感器数据,从而消除了在推理过程中对精确定位的需求。该智能体采用了不对称的参与者-评论家框架:参与者使用带有汽车本地传感器数据的循环神经网络来保留赛道布局和对手位置,而评论家在训练期间访问全局特征。在GT7中评估,我们的代理始终优于GT7的内置驱动程序。据我们所知,这项工作首次展示了基于视觉的自动赛车代理在竞技赛车场景中的冠军级表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信