{"title":"Silicon-Organic Hybrid Modulators Based on a Coupled One-Dimensional Photonic Crystal Slot Resonator Waveguide","authors":"Yanmei Li;Likang Yan;Yang Feng;Jinzhao Wang;Rui Li;Weiming Yao;Yong Yao;Xiaochuan Xu","doi":"10.1109/JPHOT.2025.3560377","DOIUrl":null,"url":null,"abstract":"High-speed and energy-efficient optical interconnects critically rely on electro-optical (EO) modulators, whose performance metrics struggle to meet the exponentially increasing demands of the near future. Silicon-organic hybrid (SOH) modulators present a promising solution due to the favorable electro-optic coefficients and fast response times of EO organic materials. However, the waveguide's nature limits the effective interaction between photons and EO materials. Although this interaction can be enhanced by utilizing advanced structures such as slot waveguides and slow-light techniques, new challenges arise, including strong dispersion that compromises bandwidth. In this paper, we propose a novel low-dispersion, slow-light waveguide structure based on a coupled one-dimensional photonic crystal slot resonator waveguide (coupled 1D PC SROW). By cascading multiple coupled resonators, the structure creates a low-dispersion, slow-light region within the photonic bandgap. Combining the strong optical field confinement of the slot with the slow-light enhancement in the time domain, modulation efficiency, quantified by <italic>V<sub>π</sub>L</i>, can be significantly improved. As an example, we demonstrate that a <italic>V<sub>π</sub>L</i> of 0.57 Vmm can be achieved for a low-dispersion wavelength range of 2.55 nm. The improvement in modulation efficiency allows for a reduction in the phase shifter length to 119 μm, overcoming the bandwidth limitations imposed by spatial walk-off between the electrical and optical waves and enabling a bandwidth of 108 GHz, a value challenging for conventional approaches. This study presents a viable alternative for realizing compact, ultra-broadband, and energy-efficient optical modulators.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10964245","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10964245/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
High-speed and energy-efficient optical interconnects critically rely on electro-optical (EO) modulators, whose performance metrics struggle to meet the exponentially increasing demands of the near future. Silicon-organic hybrid (SOH) modulators present a promising solution due to the favorable electro-optic coefficients and fast response times of EO organic materials. However, the waveguide's nature limits the effective interaction between photons and EO materials. Although this interaction can be enhanced by utilizing advanced structures such as slot waveguides and slow-light techniques, new challenges arise, including strong dispersion that compromises bandwidth. In this paper, we propose a novel low-dispersion, slow-light waveguide structure based on a coupled one-dimensional photonic crystal slot resonator waveguide (coupled 1D PC SROW). By cascading multiple coupled resonators, the structure creates a low-dispersion, slow-light region within the photonic bandgap. Combining the strong optical field confinement of the slot with the slow-light enhancement in the time domain, modulation efficiency, quantified by VπL, can be significantly improved. As an example, we demonstrate that a VπL of 0.57 Vmm can be achieved for a low-dispersion wavelength range of 2.55 nm. The improvement in modulation efficiency allows for a reduction in the phase shifter length to 119 μm, overcoming the bandwidth limitations imposed by spatial walk-off between the electrical and optical waves and enabling a bandwidth of 108 GHz, a value challenging for conventional approaches. This study presents a viable alternative for realizing compact, ultra-broadband, and energy-efficient optical modulators.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.