Existence of the fully nontrivial ground state solutions for the coupled nonlinear Brezis-Nirenberg Maxwell system

IF 2.4 2区 数学 Q1 MATHEMATICS
Cong Li , Yong Liu , Jun Wang , Wen Yang
{"title":"Existence of the fully nontrivial ground state solutions for the coupled nonlinear Brezis-Nirenberg Maxwell system","authors":"Cong Li ,&nbsp;Yong Liu ,&nbsp;Jun Wang ,&nbsp;Wen Yang","doi":"10.1016/j.jde.2025.113374","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we explore the existence of fully nontrivial solutions to the following nonlinear Brezis-Nirenberg Maxwell system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>∇</mi><mo>×</mo><mi>∇</mi><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mi>β</mi><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>∇</mi><mo>×</mo><mi>∇</mi><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mi>β</mi><mo>|</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>×</mo><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace><mspace></mspace><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo><mo>,</mo><mi>β</mi><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>6</mn><mo>]</mo></math></span>, and <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> is a simply connected, smooth, bounded Lipschitz domain with connected boundary, and <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>:</mo><mo>∂</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> are the exterior normal. This system originates from the time-harmonic Maxwell equations and possesses a variational structure. We address both general subcritical cases and Sobolev critical cases, establishing the existence of a fully nontrivial ground state solution with cylindrical symmetry. Additionally, we prove several properties of these solutions. To achieve this, we develop a new critical point theory that not only resolves the current problem but also facilitates the treatment of more general anisotropic media and other variational problems. Notably, our results provide a positive answer to the open problem posed by T. Bartsch and J. Mederski in <span><span>[7, Page 982, Problem 3]</span></span>. Moreover, from a purely mathematical perspective, we extend the partial results from <span><math><mi>N</mi><mo>=</mo><mn>3</mn></math></span> to the case of <span><math><mi>N</mi><mo>=</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113374"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore the existence of fully nontrivial solutions to the following nonlinear Brezis-Nirenberg Maxwell system{××E1+λ1E1=κ1|E1|p2E1+β|E2|2E1,inΩ,××E2+λ2E2=κ2|E2|p2E2+β|E1|2E2,inΩ,ν1×E1=0,ν2×E2=0,onΩ, where λi0,κi>0(i=1,2),β>0, p(2,6], and ΩR3 is a simply connected, smooth, bounded Lipschitz domain with connected boundary, and ν1,ν2:ΩR3 are the exterior normal. This system originates from the time-harmonic Maxwell equations and possesses a variational structure. We address both general subcritical cases and Sobolev critical cases, establishing the existence of a fully nontrivial ground state solution with cylindrical symmetry. Additionally, we prove several properties of these solutions. To achieve this, we develop a new critical point theory that not only resolves the current problem but also facilitates the treatment of more general anisotropic media and other variational problems. Notably, our results provide a positive answer to the open problem posed by T. Bartsch and J. Mederski in [7, Page 982, Problem 3]. Moreover, from a purely mathematical perspective, we extend the partial results from N=3 to the case of N=4.
耦合非线性Brezis-Nirenberg Maxwell系统完全非平凡基态解的存在性
在本文中,我们探索完全非平凡解的存在性如下非线性Brezis-Nirenberg麦克斯韦系统{∇×∇×E1 +λ1 E1 =κ1 | E1 | p−2 E1 +β| | 2 E1, E2在Ω,∇×∇×E2 +λ2 E2 =κ2 | E2 | p−2 E2 +β| E1 | 2 E2,Ω,ν1×E1 = 0,ν2×E2 = 0,在∂Ω,我在哪里λ≤0,κi> 0 (i = 1、2),β在0,p∈(2,6),Ω⊂R3是单连通的,光滑,有界李普希茨与连接域边界,ν1,ν2:∂Ω→R3外观正常。该系统起源于时谐麦克斯韦方程组,具有变分结构。我们讨论了一般次临界情况和Sobolev临界情况,建立了具有圆柱对称的完全非平凡基态解的存在性。此外,我们还证明了这些解的几个性质。为了实现这一目标,我们发展了一个新的临界点理论,它不仅解决了当前的问题,而且有助于处理更一般的各向异性介质和其他变分问题。值得注意的是,我们的结果为T. Bartsch和J. Mederski在[7,Page 982, problem 3]中提出的开放问题提供了一个肯定的答案。此外,从纯数学的角度,我们将N=3的部分结果推广到N=4的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信