Dissections of lacunary eta quotients and identically vanishing coefficients

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Tim Huber , James McLaughlin , Dongxi Ye
{"title":"Dissections of lacunary eta quotients and identically vanishing coefficients","authors":"Tim Huber ,&nbsp;James McLaughlin ,&nbsp;Dongxi Ye","doi":"10.1016/j.aam.2025.102902","DOIUrl":null,"url":null,"abstract":"<div><div>For any function <span><math><mi>A</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> define<span><span><span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msub><mo>:</mo><mo>=</mo><mo>{</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>}</mo><mo>.</mo></math></span></span></span> Now suppose <span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> are two functions whose <em>m</em>-dissections are given by<span><span><span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>q</mi><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span><span><span><span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>q</mi><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>.</mo></math></span></span></span> If it is the case that <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>⟺</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span>, then we say that <span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> have <em>similar m-dissections</em>, and then it is also clear that <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msub></math></span>, in which case we say that <span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> have <em>identically vanishing coefficients</em>.</div><div>In the present paper some new 4-dissections of particular eta quotients are developed. These are used in conjunction with known 2- and 3-dissections to prove many results on the identical vanishing of coefficients of various eta quotients, results which were found experimentally and partially proved in another paper by the present authors.</div><div>Similar arguments allow many results of the form <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msub><mo>⫋</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msub></math></span> to be proved for many pairs of lacunary eta quotients <span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102902"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000648","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For any function A(q)=n=0anqn defineA(0):={nN:an=0}. Now suppose C(q) and D(q) are two functions whose m-dissections are given byC(q)=c0G0(qm)+c1qG1(qm)++cm1qm1Gm1(qm),D(q)=d0G0(qm)+d1qG1(qm)++dm1qm1Gm1(qm). If it is the case that ci=0di=0, i=0,1,,m1, then we say that C(q) and D(q) have similar m-dissections, and then it is also clear that C(0)=D(0), in which case we say that C(q) and D(q) have identically vanishing coefficients.
In the present paper some new 4-dissections of particular eta quotients are developed. These are used in conjunction with known 2- and 3-dissections to prove many results on the identical vanishing of coefficients of various eta quotients, results which were found experimentally and partially proved in another paper by the present authors.
Similar arguments allow many results of the form C(0)D(0) to be proved for many pairs of lacunary eta quotients C(q) and D(q).
空穴eta商和同消系数的剖分
对于任意函数A(q)=∑n=0∞anqn defineA(0):={n∈n:an=0}。现在假设C(q)和D(q)是两个函数,它们的m-剖分由C(q)=c0G0(qm)+c1qG1(qm)+…+cm−1qm−1Gm−1(qm),D(q)=d0G0(qm)+d1qG1(qm)+…+dm−1qm−1Gm−1(qm)给出。如果ci=0 = di=0, i=0,1,…,m−1,那么我们说C(q)和D(q)有相似的m-截面,然后很明显C(0)=D(0),在这种情况下我们说C(q)和D(q)有相同的消失系数。本文提出了一些新的特殊eta商的4-剖分。这些与已知的2-和3-剖分结合使用,证明了许多关于各种eta商的相同系数消失的结果,这些结果是在实验中发现的,并在本文作者的另一篇论文中得到了部分证明。类似的论证允许为许多对无eta商C(q)和D(q)证明C(0)⫋D(0)形式的许多结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信