{"title":"Dissections of lacunary eta quotients and identically vanishing coefficients","authors":"Tim Huber , James McLaughlin , Dongxi Ye","doi":"10.1016/j.aam.2025.102902","DOIUrl":null,"url":null,"abstract":"<div><div>For any function <span><math><mi>A</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> define<span><span><span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msub><mo>:</mo><mo>=</mo><mo>{</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>}</mo><mo>.</mo></math></span></span></span> Now suppose <span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> are two functions whose <em>m</em>-dissections are given by<span><span><span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>q</mi><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span><span><span><span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>q</mi><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo><mo>.</mo></math></span></span></span> If it is the case that <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>⟺</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>−</mo><mn>1</mn></math></span>, then we say that <span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> have <em>similar m-dissections</em>, and then it is also clear that <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msub><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msub></math></span>, in which case we say that <span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> have <em>identically vanishing coefficients</em>.</div><div>In the present paper some new 4-dissections of particular eta quotients are developed. These are used in conjunction with known 2- and 3-dissections to prove many results on the identical vanishing of coefficients of various eta quotients, results which were found experimentally and partially proved in another paper by the present authors.</div><div>Similar arguments allow many results of the form <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msub><mo>⫋</mo><msub><mrow><mi>D</mi></mrow><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></msub></math></span> to be proved for many pairs of lacunary eta quotients <span><math><mi>C</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"168 ","pages":"Article 102902"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000648","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For any function define Now suppose and are two functions whose m-dissections are given by If it is the case that , , then we say that and have similar m-dissections, and then it is also clear that , in which case we say that and have identically vanishing coefficients.
In the present paper some new 4-dissections of particular eta quotients are developed. These are used in conjunction with known 2- and 3-dissections to prove many results on the identical vanishing of coefficients of various eta quotients, results which were found experimentally and partially proved in another paper by the present authors.
Similar arguments allow many results of the form to be proved for many pairs of lacunary eta quotients and .
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.