Liza Hadley , Caylyn Rich , Alex Tasker , Olivier Restif , Sebastian Funk
{"title":"Visual preferences for communicating modelling: a global analysis of COVID-19 policy and decision makers","authors":"Liza Hadley , Caylyn Rich , Alex Tasker , Olivier Restif , Sebastian Funk","doi":"10.1016/j.idm.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>Effective communication of modelling results to policy and decision makers has been a longstanding challenge in times of crises. This communication takes many forms - visualisations, reports, presentations - and requires careful consideration to ensure accurate maintenance of the key scientific messages. Science-to-policy communication is further exacerbated when presenting fundamentally uncertain forms of science such as infectious disease modelling and other types of modelled evidence, something which has been understudied. Here we assess the communication and visualisation of infectious disease modelling results to national COVID-19 policy and decision makers in 13 different countries. We present a synthesis of recommendations on what aspects of visuals, graphs, and plots policymakers found to be most helpful in their COVID-19 response work. This work serves as a first evidence base for developing guidelines on the communication and translation of infectious disease modelling into policy.</div></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":"10 3","pages":"Pages 924-934"},"PeriodicalIF":8.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042725000314","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Effective communication of modelling results to policy and decision makers has been a longstanding challenge in times of crises. This communication takes many forms - visualisations, reports, presentations - and requires careful consideration to ensure accurate maintenance of the key scientific messages. Science-to-policy communication is further exacerbated when presenting fundamentally uncertain forms of science such as infectious disease modelling and other types of modelled evidence, something which has been understudied. Here we assess the communication and visualisation of infectious disease modelling results to national COVID-19 policy and decision makers in 13 different countries. We present a synthesis of recommendations on what aspects of visuals, graphs, and plots policymakers found to be most helpful in their COVID-19 response work. This work serves as a first evidence base for developing guidelines on the communication and translation of infectious disease modelling into policy.
期刊介绍:
Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.