Yu Tian , Zhile Wang , Shiyuan Li , Chuning Ji , Chuangang Gong , Abdoul Wahab , Shengkang Zhang , Zhongchen Ao
{"title":"Mechanical behavior of waste rock-based geopolymer as a sustainable backfill material: Strength evolution and fracture mechanisms","authors":"Yu Tian , Zhile Wang , Shiyuan Li , Chuning Ji , Chuangang Gong , Abdoul Wahab , Shengkang Zhang , Zhongchen Ao","doi":"10.1016/j.polymertesting.2025.108826","DOIUrl":null,"url":null,"abstract":"<div><div>Green backfill materials enhance slope stability and support sustainable mining in open-pit mines. However, current research mainly focuses on traditional loose fills, neglecting eco-friendly cementitious alternatives. In this study, the potential of waste rock-based geopolymers as mine backfilling materials were proved. Specifically, the compressive strength test was conducted to evaluate the effect of materials interaction, aggregate gradation index, alkali activator dosage, water-to-binder ratio and waste rock utilization rate on the strength. And acoustic emission (AE) technology was used to clarify fracture mechanisms of materials. Results demonstrated high-temperature treatment improves the compressive and flexural strength of waste rock-based paste, with calcined waste rock powder effectively enhancing fly ash reactivity. Increasing slag replacement reduces compressive strength linearly, with 5 MPa decline per 10 % increase in slag content. In addition, specimens with on-site gradation aggregate or higher alkali activator dosage exhibit superior strength. The water-binder ratio around 0.4 and 1:5 waste rock utilization ratio enhances reaction dynamic, maximizing compressive strength. Furthermore, the stress-strain process includes four distinct stages: the compaction and elastic stage, stable crack growth stage, unstable crack growth stage and the post-peak stage. Failure patterns predominantly feature single-slope shear fractures, with cracks concentrated in middle and upper areas of specimen. This study contributes to sustainable resource utilization and green mine construction.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"147 ","pages":"Article 108826"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825001400","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Green backfill materials enhance slope stability and support sustainable mining in open-pit mines. However, current research mainly focuses on traditional loose fills, neglecting eco-friendly cementitious alternatives. In this study, the potential of waste rock-based geopolymers as mine backfilling materials were proved. Specifically, the compressive strength test was conducted to evaluate the effect of materials interaction, aggregate gradation index, alkali activator dosage, water-to-binder ratio and waste rock utilization rate on the strength. And acoustic emission (AE) technology was used to clarify fracture mechanisms of materials. Results demonstrated high-temperature treatment improves the compressive and flexural strength of waste rock-based paste, with calcined waste rock powder effectively enhancing fly ash reactivity. Increasing slag replacement reduces compressive strength linearly, with 5 MPa decline per 10 % increase in slag content. In addition, specimens with on-site gradation aggregate or higher alkali activator dosage exhibit superior strength. The water-binder ratio around 0.4 and 1:5 waste rock utilization ratio enhances reaction dynamic, maximizing compressive strength. Furthermore, the stress-strain process includes four distinct stages: the compaction and elastic stage, stable crack growth stage, unstable crack growth stage and the post-peak stage. Failure patterns predominantly feature single-slope shear fractures, with cracks concentrated in middle and upper areas of specimen. This study contributes to sustainable resource utilization and green mine construction.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.