CycleMatch: Cyclic pseudo-labeling distillation in semi-supervised medical image segmentation

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chunshi Wang , Chuan Xiong , Bin Zhao , Shuxue Ding
{"title":"CycleMatch: Cyclic pseudo-labeling distillation in semi-supervised medical image segmentation","authors":"Chunshi Wang ,&nbsp;Chuan Xiong ,&nbsp;Bin Zhao ,&nbsp;Shuxue Ding","doi":"10.1016/j.patrec.2025.04.014","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we present a semi-supervised medical image segmentation framework called CycleMatch, which aims to tackle the dependency of fully supervised methods on a large amount of labeled data. By integrating a cyclic pseudo-label distillation mechanism with image-level and feature-level perturbations, CycleMatch effectively leverages unlabeled data to enhance model performance and robustness. Experimental results demonstrate that CycleMatch outperforms existing semi-supervised methods across various data annotation ratios, particularly excelling in scenarios with limited labeled data. Additionally, an in-depth analysis of feature perturbation types and parameter choices further validates CycleMatch’s effectiveness and adaptability in handling different medical image datasets. Overall, CycleMatch offers a new solution for medical image segmentation, showcasing the potential for achieving efficient and accurate segmentation even with limited data.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"193 ","pages":"Pages 135-141"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525001473","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present a semi-supervised medical image segmentation framework called CycleMatch, which aims to tackle the dependency of fully supervised methods on a large amount of labeled data. By integrating a cyclic pseudo-label distillation mechanism with image-level and feature-level perturbations, CycleMatch effectively leverages unlabeled data to enhance model performance and robustness. Experimental results demonstrate that CycleMatch outperforms existing semi-supervised methods across various data annotation ratios, particularly excelling in scenarios with limited labeled data. Additionally, an in-depth analysis of feature perturbation types and parameter choices further validates CycleMatch’s effectiveness and adaptability in handling different medical image datasets. Overall, CycleMatch offers a new solution for medical image segmentation, showcasing the potential for achieving efficient and accurate segmentation even with limited data.

Abstract Image

CycleMatch:半监督医学图像分割中的循环伪标记蒸馏
在本研究中,我们提出了一种称为CycleMatch的半监督医学图像分割框架,旨在解决完全监督方法对大量标记数据的依赖问题。通过将循环伪标签蒸馏机制与图像级和特征级扰动相结合,CycleMatch有效地利用未标记数据来增强模型性能和鲁棒性。实验结果表明,cyclelmatch在各种数据标注比率上都优于现有的半监督方法,特别是在标记数据有限的情况下表现出色。此外,对特征摄动类型和参数选择的深入分析进一步验证了CycleMatch在处理不同医学图像数据集方面的有效性和适应性。总体而言,CycleMatch为医学图像分割提供了一种新的解决方案,展示了即使在有限的数据下也能实现高效准确分割的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信