Zhen Li , Juyuan Huang , Xinxin Liu , Peng Xu , Xinwen Shen , Chu Pan , Wei Zhang , Wenbin Liu , Henry Han
{"title":"KRN-DTI: Towards accurate drug-target interaction prediction with Kolmogorov-Arnold and residual networks","authors":"Zhen Li , Juyuan Huang , Xinxin Liu , Peng Xu , Xinwen Shen , Chu Pan , Wei Zhang , Wenbin Liu , Henry Han","doi":"10.1016/j.ymeth.2025.04.009","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting drug-target interactions (DTIs) accurately is essential in the field of drug discovery. Recently, artificial intelligence (AI) technologies, especially graph convolutional networks (GCNs), have been developed to tackle this challenge. However, as the number of GCN layers increases, models may lose critical information due to excessive smoothing. Moreover, these methods often lack interpretability and are dependent on specific datasets, which limits their generalizability. Consequently, this study introduces a novel method, KRN-DTI, which employs interpretable GCN technology to predict DTIs based on a drug-target heterogeneous network. The method uses GCN technology to identify potential DTIs by leveraging known interactions and dynamically adjusting the weights, thereby enhancing the model's interpretability. Additionally, residual connection technology is employed to integrate GNN outputs, mitigating the over-smoothing issue. Furthermore, the model's interpretability is enhanced by adaptively adjusting weights using Kolmogorov–Arnold Networks (KAN) and attention mechanisms. Experimental results show that KRN-DTI outperforms several advanced computational methods on the benchmark dataset. Case studies further highlight the effectiveness of KRN-DTI in predicting potential DTIs, showcasing its potential for real-world applications in drug discovery. Our code and data are publicly accessible at: <span><span>https://github.com/lizhen5000/KRN-DTI.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"240 ","pages":"Pages 137-144"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325001045","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting drug-target interactions (DTIs) accurately is essential in the field of drug discovery. Recently, artificial intelligence (AI) technologies, especially graph convolutional networks (GCNs), have been developed to tackle this challenge. However, as the number of GCN layers increases, models may lose critical information due to excessive smoothing. Moreover, these methods often lack interpretability and are dependent on specific datasets, which limits their generalizability. Consequently, this study introduces a novel method, KRN-DTI, which employs interpretable GCN technology to predict DTIs based on a drug-target heterogeneous network. The method uses GCN technology to identify potential DTIs by leveraging known interactions and dynamically adjusting the weights, thereby enhancing the model's interpretability. Additionally, residual connection technology is employed to integrate GNN outputs, mitigating the over-smoothing issue. Furthermore, the model's interpretability is enhanced by adaptively adjusting weights using Kolmogorov–Arnold Networks (KAN) and attention mechanisms. Experimental results show that KRN-DTI outperforms several advanced computational methods on the benchmark dataset. Case studies further highlight the effectiveness of KRN-DTI in predicting potential DTIs, showcasing its potential for real-world applications in drug discovery. Our code and data are publicly accessible at: https://github.com/lizhen5000/KRN-DTI.git.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.