Wentao Xu , Xiang Li , Qiuyan Xu , Yuxuan Zhang , Xiang Wu , Weilin Li , Ruize Wang , Gang Liang , Hao Guo
{"title":"A RISC-V based SoC for blockchain data integration in IoT edge devices","authors":"Wentao Xu , Xiang Li , Qiuyan Xu , Yuxuan Zhang , Xiang Wu , Weilin Li , Ruize Wang , Gang Liang , Hao Guo","doi":"10.1016/j.mejo.2025.106697","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread growth of the Internet of Things (IoT) has significantly increased the need for robust data interaction mechanisms, making data security a critical challenge. Blockchain technology, characterized by its decentralized architecture, presents an innovative solution for managing data within IoT ecosystems. A collaborative cloud-edge framework emerges as a dependable option for deploying IoT blockchains; however, energy-efficient hardware support on the edge remains insufficient. To resolve this issue, this study introduces a low-power System on Chip (SoC) integrated with a specialized secure coprocessor to handle data on-chain processes. To mitigate physical-level security risks, the SoC incorporates a trusted computing architecture based on dual RISC-V cores. Experimental results using an FPGA platform reveal that the proposed SoC achieves a 12.1-fold performance enhancement for complete data on-chain processing tasks compared to the high-performance Intel i9-13950HX CPU, with total power consumption limited to just 0.579 W.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"161 ","pages":"Article 106697"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125001468","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread growth of the Internet of Things (IoT) has significantly increased the need for robust data interaction mechanisms, making data security a critical challenge. Blockchain technology, characterized by its decentralized architecture, presents an innovative solution for managing data within IoT ecosystems. A collaborative cloud-edge framework emerges as a dependable option for deploying IoT blockchains; however, energy-efficient hardware support on the edge remains insufficient. To resolve this issue, this study introduces a low-power System on Chip (SoC) integrated with a specialized secure coprocessor to handle data on-chain processes. To mitigate physical-level security risks, the SoC incorporates a trusted computing architecture based on dual RISC-V cores. Experimental results using an FPGA platform reveal that the proposed SoC achieves a 12.1-fold performance enhancement for complete data on-chain processing tasks compared to the high-performance Intel i9-13950HX CPU, with total power consumption limited to just 0.579 W.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.