{"title":"Symplectic period for a representation of GLn(D)","authors":"Hariom Sharma, Mahendra Kumar Verma","doi":"10.1016/j.jpaa.2025.107976","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>n</em> be a natural number, taking the value 3 or 4. Let D be a quaternion division algebra over a non-archimedean local field k of characteristic zero, and let <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> be the unique non-split inner form of the symplectic group <span><math><msub><mrow><mi>Sp</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>. This paper classifies those irreducible admissible representations of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> that admit a symplectic period, that is, those irreducible admissible representations <span><math><mo>(</mo><mi>π</mi><mo>,</mo><mi>V</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>GL</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> which have a linear functional <em>l</em> on <em>V</em> such that <span><math><mi>l</mi><mo>(</mo><mi>π</mi><mo>(</mo><mi>h</mi><mo>)</mo><mi>v</mi><mo>)</mo><mo>=</mo><mi>l</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>V</mi></math></span> and <span><math><mi>h</mi><mo>∈</mo><msub><mrow><mi>Sp</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span>. Our results also contain all unitary representations having a symplectic period, as stated in Prasad's conjecture.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 6","pages":"Article 107976"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492500115X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let n be a natural number, taking the value 3 or 4. Let D be a quaternion division algebra over a non-archimedean local field k of characteristic zero, and let be the unique non-split inner form of the symplectic group . This paper classifies those irreducible admissible representations of that admit a symplectic period, that is, those irreducible admissible representations of which have a linear functional l on V such that for all and . Our results also contain all unitary representations having a symplectic period, as stated in Prasad's conjecture.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.