In situ amorphous-adhesive interface facilitate ionic transport in protonic ceramic fuel cells

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Wenjuan Zhao , Jun Wang , Bin Lin , Enyi Hu , Penghui Yao , Faze Wang , Bin Zhu , Peter Lund , Muhammad Imran Asghar
{"title":"In situ amorphous-adhesive interface facilitate ionic transport in protonic ceramic fuel cells","authors":"Wenjuan Zhao ,&nbsp;Jun Wang ,&nbsp;Bin Lin ,&nbsp;Enyi Hu ,&nbsp;Penghui Yao ,&nbsp;Faze Wang ,&nbsp;Bin Zhu ,&nbsp;Peter Lund ,&nbsp;Muhammad Imran Asghar","doi":"10.1016/j.enconman.2025.119851","DOIUrl":null,"url":null,"abstract":"<div><div>Protonic ceramic fuel cells (PCFCs) represent a promising carbon–neutral power-generation technology, leveraging the high proton conductivity demonstrated in stable yttrium-doped barium zirconate (BZY) electrolyte, but their practical application is hindered by poor sinterability and diminished overall proton conductivity caused by resistive grain boundaries. In this work, we present a sintering-free superfast-protonic ceramic fuel cell (S-PCFC) based on BZY electrolyte enabled by an amorphous-adhesive-enabled interface. S-PCFC is fabricated in-situ via a facile and scalable dry-press process, circumventing the need for conventional high-temperature sintering in air. A molten mixture of LiOH and Li<sub>2</sub>CO<sub>3</sub> is in situ embedded during electrochemical operation, forming an amorphous-adhesive interface within grain boundaries. This approach achieves a record-high power output of 866 mW·cm<sup>−2</sup> and the highest reported proton conductivity for BZY electrolytes (0.257 S·cm<sup>−1</sup> at 520 ℃). Density functional theory (DFT) calculations reveal the reduced migration energy barriers for proton transport, demonstrating that the in-situ formed amorphous-adhesive interface facilitates ultrafast proton conduction within the sintering-free BZY electrolyte. This S-PCFC unlocks new possibilities for superfast-protonic ceramics.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"334 ","pages":"Article 119851"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425003747","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Protonic ceramic fuel cells (PCFCs) represent a promising carbon–neutral power-generation technology, leveraging the high proton conductivity demonstrated in stable yttrium-doped barium zirconate (BZY) electrolyte, but their practical application is hindered by poor sinterability and diminished overall proton conductivity caused by resistive grain boundaries. In this work, we present a sintering-free superfast-protonic ceramic fuel cell (S-PCFC) based on BZY electrolyte enabled by an amorphous-adhesive-enabled interface. S-PCFC is fabricated in-situ via a facile and scalable dry-press process, circumventing the need for conventional high-temperature sintering in air. A molten mixture of LiOH and Li2CO3 is in situ embedded during electrochemical operation, forming an amorphous-adhesive interface within grain boundaries. This approach achieves a record-high power output of 866 mW·cm−2 and the highest reported proton conductivity for BZY electrolytes (0.257 S·cm−1 at 520 ℃). Density functional theory (DFT) calculations reveal the reduced migration energy barriers for proton transport, demonstrating that the in-situ formed amorphous-adhesive interface facilitates ultrafast proton conduction within the sintering-free BZY electrolyte. This S-PCFC unlocks new possibilities for superfast-protonic ceramics.

Abstract Image

原位非晶黏附界面促进质子陶瓷燃料电池中的离子传输
质子陶瓷燃料电池(pcfc)是一种很有前途的碳中性发电技术,利用了稳定的掺钇锆酸钡(BZY)电解质中显示的高质子导电性,但其实际应用受到烧结性差和电阻晶界导致的整体质子导电性降低的阻碍。在这项工作中,我们提出了一种基于BZY电解质的无烧结超高速质子陶瓷燃料电池(S-PCFC)。S-PCFC是通过一种简单且可扩展的干压工艺在现场制造的,避免了在空气中进行传统的高温烧结。在电化学操作过程中,LiOH和Li2CO3的熔融混合物在原位嵌入,在晶界内形成非晶粘合剂界面。该方法实现了创纪录的866 mW·cm−2的高功率输出和BZY电解质的最高质子电导率(520℃时为0.257 S·cm−1)。密度泛函理论(DFT)计算显示质子输运的迁移能垒降低,表明原位形成的非晶黏附界面促进了质子在无烧结BZY电解质内的超快传导。这种S-PCFC开启了超高速质子陶瓷的新可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信