{"title":"Novel guaiacol-based high-performance dimethacrylate containing fluorenyl cardo structure for dental restorative resins","authors":"Yinan Sun , Lihua Hong , Lin Sun , Chengji Zhao","doi":"10.1016/j.jmbbm.2025.107032","DOIUrl":null,"url":null,"abstract":"<div><div>In dentistry, the use of bisphenol A glycidyl methacrylate (Bis-GMA) is being questioned since bisphenol A is regarded as an endocrine disruptor. As alternative candidates to Bis-GMA, bio-based dental resins face the crucial challenge of low mechanical strength and high water sorption. In this study, a novel guaiacol-based dimethacrylate containing fluorenyl cardo-structure was developed to effectively improve the hydrophobicity, enhance the mechanical properties, and reduce the polymerization shrinkage of bio-based dental restorative resins. Therefore, 9, 9-bis(3-methoxy-4-glycerolate methacrylate)fluorene (BMHF-GMA) was synthesized from a new guaiacol-based bisphenol, 9, 9-bis(3-methoxy-4-phenol)fluorene (BMHF), which is a lower estrogenic activity bisphenol monomer than commercial bisphenols from the results of cell proliferation test. The experimental dental resin (5 MHMA5T) was prepared containing BMHF-GMA and triethylene glycol dimethacrylate in a 1:1 ratio. The control group (5B5T) replaced BMHF-GMA completely with Bis-GMA. Evaluation of both dental resins revealed that 5 MHMA5T possessed comparable double bond conversion (>50 % in 20 s), better volumetric polymerization shrinkage (7.19 ± 0.09 %), shrinkage stress (0.92 ± 0.01 MPa in 1200 s), water sorption (39.9 ± 0.52 μg mm<sup>−3</sup>), water solubility (0.99 ± 0.04 μg mm<sup>−3</sup>) and lower cytotoxicity compared with 5B5T. 5 MHMA5T had superior mechanical properties (flexural strength: 122.30 ± 5.00 MPa; flexural modulus: 3.49 ± 0.02 GPa; Vickers hardness number: 25.21 ± 0.56 HV). Especially, after water immersion, it still maintained adequate mechanical properties (flexural strength: 97.34 ± 5.00 MPa; flexural modulus: 2.92 ± 0.02 GPa; Vickers hardness number: 19.33 ± 0.61 HV). Therefore, the new dimethacrylate BMHF-GMA shows great potential in complex and wet oral environments and offers a promising alternative to Bis-GMA in dental restorative resins.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"168 ","pages":"Article 107032"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125001481","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In dentistry, the use of bisphenol A glycidyl methacrylate (Bis-GMA) is being questioned since bisphenol A is regarded as an endocrine disruptor. As alternative candidates to Bis-GMA, bio-based dental resins face the crucial challenge of low mechanical strength and high water sorption. In this study, a novel guaiacol-based dimethacrylate containing fluorenyl cardo-structure was developed to effectively improve the hydrophobicity, enhance the mechanical properties, and reduce the polymerization shrinkage of bio-based dental restorative resins. Therefore, 9, 9-bis(3-methoxy-4-glycerolate methacrylate)fluorene (BMHF-GMA) was synthesized from a new guaiacol-based bisphenol, 9, 9-bis(3-methoxy-4-phenol)fluorene (BMHF), which is a lower estrogenic activity bisphenol monomer than commercial bisphenols from the results of cell proliferation test. The experimental dental resin (5 MHMA5T) was prepared containing BMHF-GMA and triethylene glycol dimethacrylate in a 1:1 ratio. The control group (5B5T) replaced BMHF-GMA completely with Bis-GMA. Evaluation of both dental resins revealed that 5 MHMA5T possessed comparable double bond conversion (>50 % in 20 s), better volumetric polymerization shrinkage (7.19 ± 0.09 %), shrinkage stress (0.92 ± 0.01 MPa in 1200 s), water sorption (39.9 ± 0.52 μg mm−3), water solubility (0.99 ± 0.04 μg mm−3) and lower cytotoxicity compared with 5B5T. 5 MHMA5T had superior mechanical properties (flexural strength: 122.30 ± 5.00 MPa; flexural modulus: 3.49 ± 0.02 GPa; Vickers hardness number: 25.21 ± 0.56 HV). Especially, after water immersion, it still maintained adequate mechanical properties (flexural strength: 97.34 ± 5.00 MPa; flexural modulus: 2.92 ± 0.02 GPa; Vickers hardness number: 19.33 ± 0.61 HV). Therefore, the new dimethacrylate BMHF-GMA shows great potential in complex and wet oral environments and offers a promising alternative to Bis-GMA in dental restorative resins.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.