Numerical study on mechanisms underlying the heat transfer enhancement of upward supercritical CO2 flow at low Reynolds numbers near the pseudo-critical region through a microtube

IF 6.4 2区 工程技术 Q1 MECHANICS
Ergin Bayrak , Hojin Ahn
{"title":"Numerical study on mechanisms underlying the heat transfer enhancement of upward supercritical CO2 flow at low Reynolds numbers near the pseudo-critical region through a microtube","authors":"Ergin Bayrak ,&nbsp;Hojin Ahn","doi":"10.1016/j.icheatmasstransfer.2025.108995","DOIUrl":null,"url":null,"abstract":"<div><div>The buoyancy and thermal acceleration effects of supercritical CO<sub>2</sub> flow near the pseudo-critical region have been widely mentioned as the mechanism of heat transfer enhancement in the literature. However, most publications deal with turbulent flows and do not discuss the details of how these effects alter flow structure and enhance heat transfer. The present study numerically investigated mechanisms underlying the heat transfer enhancement of upward supercritical CO<sub>2</sub> flow through a microtube, 0.5 mm in diameter, at low Reynolds numbers. The heat transfer enhancement was closely associated with the appearance and disappearance of the M-shaped velocity profile. When the M-shaped profile started forming by the buoyancy effect, the first local maximum of the heat transfer coefficient appeared as the thermal acceleration of the boundary layer entrained fluid from the wall region. The fluid entrainment carried thermal energy from the wall toward the core, thus enhancing the heat transfer. When the M-shaped profile started disappearing due to the thermal acceleration in the core region, the second maximum appeared in some cases due to abrupt turbulence developed by two forces in the opposite direction: one force dragging the local maximum velocity in the M-shaped profile and the other force accelerating the core region.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"165 ","pages":"Article 108995"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073519332500421X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The buoyancy and thermal acceleration effects of supercritical CO2 flow near the pseudo-critical region have been widely mentioned as the mechanism of heat transfer enhancement in the literature. However, most publications deal with turbulent flows and do not discuss the details of how these effects alter flow structure and enhance heat transfer. The present study numerically investigated mechanisms underlying the heat transfer enhancement of upward supercritical CO2 flow through a microtube, 0.5 mm in diameter, at low Reynolds numbers. The heat transfer enhancement was closely associated with the appearance and disappearance of the M-shaped velocity profile. When the M-shaped profile started forming by the buoyancy effect, the first local maximum of the heat transfer coefficient appeared as the thermal acceleration of the boundary layer entrained fluid from the wall region. The fluid entrainment carried thermal energy from the wall toward the core, thus enhancing the heat transfer. When the M-shaped profile started disappearing due to the thermal acceleration in the core region, the second maximum appeared in some cases due to abrupt turbulence developed by two forces in the opposite direction: one force dragging the local maximum velocity in the M-shaped profile and the other force accelerating the core region.
伪临界区附近低雷诺数向上超临界CO2流动通过微管强化传热机理的数值研究
超临界CO2在拟临界区域附近的浮力和热加速效应作为强化换热的机制在文献中被广泛提及。然而,大多数出版物处理湍流,并没有讨论这些影响如何改变流动结构和增强传热的细节。本研究对低雷诺数下向上超临界CO2流过直径0.5 mm的微管的传热强化机制进行了数值研究。换热强化与m型速度剖面的出现和消失密切相关。当浮力作用下m型廓形开始形成时,传热系数的第一个局部最大值出现在边界层夹带壁面流体的热加速度上。流体夹带将热能从壁面带到堆芯,从而加强了传热。当m型线由于核心区的热加速而开始消失时,在某些情况下,由于两种相反方向的力产生的突然湍流,即一种力拖拖m型线局部最大速度,另一种力加速核心区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信