Wen Wang , Hai-Tong Wang , Yang Guo , Qi Zhao , Jiang-Tao Lu , Zhao-Ming Cui , Xi Zhang , Le-Le Qiu , Xiao-Yin Wang , Tian-Yun Wang , Yan-Long Jia
{"title":"m6A modification profiles of the CHO cells with differential recombinant protein expression using MeRIP-seq/RNA-seq","authors":"Wen Wang , Hai-Tong Wang , Yang Guo , Qi Zhao , Jiang-Tao Lu , Zhao-Ming Cui , Xi Zhang , Le-Le Qiu , Xiao-Yin Wang , Tian-Yun Wang , Yan-Long Jia","doi":"10.1016/j.ijbiomac.2025.143429","DOIUrl":null,"url":null,"abstract":"<div><div>Chinese hamster ovary (CHO) cells remain the primary host system for recombinant therapeutic protein production. Enhancing transgene expression efficiency while maintaining stable production persists as a key challenge in CHO cell engineering. While N6-methyladenosine (m6A) modification – the most abundant RNA methylation – regulates RNA stability and translational efficiency, its role in modulating recombinant protein expression remains underexplored. In this study, through m6A-specific methylated RNA immunoprecipitation sequencing (MeRIP-seq) of high- (ADM-H) and low- (ADM-L) recombinant adalimumab (ADM)-producing CHO cell lines, we identified 668 differentially methylated peaks. Notably, m6A methylation patterns showed positive correlation with heavy chain (HC)/light chain (LC) expression levels between ADM-H and ADM-L cell lines. Differential expression of factors, such as Igf2bp2, Gli2, and Met correlated with PI3K-Akt and Hippo signaling pathways, suggesting m6A-mediated regulatory functions of recombinant protein expression in CHO cells. Furthermore, pharmacological inhibition of Gli2 or Met in cell culture effectively enhanced ADM production while suppressing target gene expression. These findings elucidate m6A's functional role in recombinant protein production and provide actionable strategies for CHO cell line optimization.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"310 ","pages":"Article 143429"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025039819","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chinese hamster ovary (CHO) cells remain the primary host system for recombinant therapeutic protein production. Enhancing transgene expression efficiency while maintaining stable production persists as a key challenge in CHO cell engineering. While N6-methyladenosine (m6A) modification – the most abundant RNA methylation – regulates RNA stability and translational efficiency, its role in modulating recombinant protein expression remains underexplored. In this study, through m6A-specific methylated RNA immunoprecipitation sequencing (MeRIP-seq) of high- (ADM-H) and low- (ADM-L) recombinant adalimumab (ADM)-producing CHO cell lines, we identified 668 differentially methylated peaks. Notably, m6A methylation patterns showed positive correlation with heavy chain (HC)/light chain (LC) expression levels between ADM-H and ADM-L cell lines. Differential expression of factors, such as Igf2bp2, Gli2, and Met correlated with PI3K-Akt and Hippo signaling pathways, suggesting m6A-mediated regulatory functions of recombinant protein expression in CHO cells. Furthermore, pharmacological inhibition of Gli2 or Met in cell culture effectively enhanced ADM production while suppressing target gene expression. These findings elucidate m6A's functional role in recombinant protein production and provide actionable strategies for CHO cell line optimization.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.