Starch nanoparticle loading cinnamon essential oil encapsulated by complex coacervation of chitosan and gum Arabic improve the stability and antibacterial potential of the microcapsules
Yang Yang , Wenjie Yang , Xingyu Chen , Huaxi Xiao , Gao-Qiang Liu , Wenfang Han , Jiangtao Li
{"title":"Starch nanoparticle loading cinnamon essential oil encapsulated by complex coacervation of chitosan and gum Arabic improve the stability and antibacterial potential of the microcapsules","authors":"Yang Yang , Wenjie Yang , Xingyu Chen , Huaxi Xiao , Gao-Qiang Liu , Wenfang Han , Jiangtao Li","doi":"10.1016/j.ijbiomac.2025.143613","DOIUrl":null,"url":null,"abstract":"<div><div>Essential oils have excellent antibacterial effects, but the rapid volatility of essential oils reduces their antibacterial effects. Therefore, the adsorption and slow release behavior of essential oils are of great significance for food preservation. This study used starch nanoparticles (SN) with different average particle sizes as carriers to adsorb cinnamon essential oil (CEO) and obtain starch nanoparticle - cinnamon essential oil (CEO-SN) complexes. Chitosan (CS) and Arabic gum (GA) composite films were used as wall materials, and sodium tripolyphosphate (STPP) was used as a curing crosslinking agent to encapsulate CEO-SN, forming CEO microcapsules (CM-CEO-SN). The optimal conditions of preparing CM-CEO-SN were determined by a single-factor experiment and response surface methodology. The thermal stability, morphology, in vitro release and antibacterial potential of the microcapsules were examined using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric differential thermal analysis and differential scanning calorimetry. The results showed that the release rate of CM-CEO-SN300 decreased by 33.7 % and had the better slow release effect and thermal stability. In addition, CM-CEO-SN300 effectively inhibited the spoilage of cherry tomatoes during storage. These findings provide useful guidance for extending food shelf life.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"310 ","pages":"Article 143613"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025041650","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Essential oils have excellent antibacterial effects, but the rapid volatility of essential oils reduces their antibacterial effects. Therefore, the adsorption and slow release behavior of essential oils are of great significance for food preservation. This study used starch nanoparticles (SN) with different average particle sizes as carriers to adsorb cinnamon essential oil (CEO) and obtain starch nanoparticle - cinnamon essential oil (CEO-SN) complexes. Chitosan (CS) and Arabic gum (GA) composite films were used as wall materials, and sodium tripolyphosphate (STPP) was used as a curing crosslinking agent to encapsulate CEO-SN, forming CEO microcapsules (CM-CEO-SN). The optimal conditions of preparing CM-CEO-SN were determined by a single-factor experiment and response surface methodology. The thermal stability, morphology, in vitro release and antibacterial potential of the microcapsules were examined using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric differential thermal analysis and differential scanning calorimetry. The results showed that the release rate of CM-CEO-SN300 decreased by 33.7 % and had the better slow release effect and thermal stability. In addition, CM-CEO-SN300 effectively inhibited the spoilage of cherry tomatoes during storage. These findings provide useful guidance for extending food shelf life.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.