{"title":"Tensor product of A∞-categories","authors":"Mattia Ornaghi","doi":"10.1016/j.jpaa.2025.107987","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we define the tensor product of two <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-categories and two <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-functors. This tensor product makes the category of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-categories symmetric monoidal (up to homotopy), and the category <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub><msup><mrow><mi>Cat</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>/</mo><mo>≈</mo></math></span> a closed symmetric monoidal category. Moreover, we define the derived tensor product making <span><math><mtext>Ho</mtext><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub><mrow><mi>Cat</mi></mrow><mo>)</mo></math></span>, the homotopy category of the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-categories, a closed symmetric monoidal category. We also provide an explicit description of the internal homs in terms of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-functors.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107987"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001264","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we define the tensor product of two -categories and two -functors. This tensor product makes the category of -categories symmetric monoidal (up to homotopy), and the category a closed symmetric monoidal category. Moreover, we define the derived tensor product making , the homotopy category of the -categories, a closed symmetric monoidal category. We also provide an explicit description of the internal homs in terms of -functors.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.