Tensor product of A∞-categories

IF 0.7 2区 数学 Q2 MATHEMATICS
Mattia Ornaghi
{"title":"Tensor product of A∞-categories","authors":"Mattia Ornaghi","doi":"10.1016/j.jpaa.2025.107987","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we define the tensor product of two <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-categories and two <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-functors. This tensor product makes the category of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-categories symmetric monoidal (up to homotopy), and the category <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub><msup><mrow><mi>Cat</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>/</mo><mo>≈</mo></math></span> a closed symmetric monoidal category. Moreover, we define the derived tensor product making <span><math><mtext>Ho</mtext><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub><mrow><mi>Cat</mi></mrow><mo>)</mo></math></span>, the homotopy category of the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-categories, a closed symmetric monoidal category. We also provide an explicit description of the internal homs in terms of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>-functors.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107987"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001264","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we define the tensor product of two A-categories and two A-functors. This tensor product makes the category of A-categories symmetric monoidal (up to homotopy), and the category ACatu/ a closed symmetric monoidal category. Moreover, we define the derived tensor product making Ho(ACat), the homotopy category of the A-categories, a closed symmetric monoidal category. We also provide an explicit description of the internal homs in terms of A-functors.
A∞-类的张量积
本文定义了两个A∞范畴和两个A∞函子的张量积。这个张量积使得A∞-范畴的范畴对称单一性(直到同伦),并且A∞Catu/≈一个闭对称单一性范畴。此外,我们定义了派生张量积,使A∞-范畴的同伦范畴Ho(A∞Cat)成为一个闭对称单项式范畴。我们还提供了一个关于A∞泛函子的内部homs的显式描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信