Huan Zhang , Wen Si , Bo Wang , Jiao Han , Fan Ding , Qingsheng Xue , Xiaohua Cao
{"title":"Schizophrenia-like phenotypes and long-term synaptic plasticity impairment in GluN2A-transgenic mice","authors":"Huan Zhang , Wen Si , Bo Wang , Jiao Han , Fan Ding , Qingsheng Xue , Xiaohua Cao","doi":"10.1016/j.pbb.2025.174026","DOIUrl":null,"url":null,"abstract":"<div><div>While <em>N</em>-methyl-<span>d</span>-aspartate receptor (NMDAR) hypofunction has been suggested as a hallmark of schizophrenia, the role of subunit-specific dysregulation such as GluN2A overexpression remains poorly understood. The present study comprehensively investigated the impact of GluN2A overexpression on behavioral phenotypes, cognitive functions, and synaptic plasticity in transgenic mice with forebrain-specific overexpression of the GluN2A subunit (GluN2A-TG). Behavioral assessments revealed schizophrenia-like phenotypes, including prolonged stereotypic movement duration, impaired sensorimotor gating, reduced social interaction, and diminished nest-building activity in GluN2A-TG mice. Consistently, GluN2A-TG mice exhibited not only deficits in spatial working memory and olfactory working memory but also impaired associative learning. In addition, both long-term potentiation and long-term depression were significantly attenuated in the prefrontal cortex (PFC) of GluN2A-TG mice. Furthermore, electrophysiological analysis of NMDAR-mediated excitatory postsynaptic currents in PFC neurons revealed altered kinetics characterized by a faster decay time and significantly increased amplitude in GluN2A-TG mice. Collectively, these findings suggest that GluN2A overexpression may induce schizophrenia-like phenotypes via impairing NMDAR-dependent long-term synaptic plasticity in the PFC, likely due to altered NMDAR subunit composition leading to disrupted calcium signaling dynamics. These results provide critical insights into the pathological role of GluN2A in schizophrenia.</div></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"252 ","pages":"Article 174026"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305725000735","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
While N-methyl-d-aspartate receptor (NMDAR) hypofunction has been suggested as a hallmark of schizophrenia, the role of subunit-specific dysregulation such as GluN2A overexpression remains poorly understood. The present study comprehensively investigated the impact of GluN2A overexpression on behavioral phenotypes, cognitive functions, and synaptic plasticity in transgenic mice with forebrain-specific overexpression of the GluN2A subunit (GluN2A-TG). Behavioral assessments revealed schizophrenia-like phenotypes, including prolonged stereotypic movement duration, impaired sensorimotor gating, reduced social interaction, and diminished nest-building activity in GluN2A-TG mice. Consistently, GluN2A-TG mice exhibited not only deficits in spatial working memory and olfactory working memory but also impaired associative learning. In addition, both long-term potentiation and long-term depression were significantly attenuated in the prefrontal cortex (PFC) of GluN2A-TG mice. Furthermore, electrophysiological analysis of NMDAR-mediated excitatory postsynaptic currents in PFC neurons revealed altered kinetics characterized by a faster decay time and significantly increased amplitude in GluN2A-TG mice. Collectively, these findings suggest that GluN2A overexpression may induce schizophrenia-like phenotypes via impairing NMDAR-dependent long-term synaptic plasticity in the PFC, likely due to altered NMDAR subunit composition leading to disrupted calcium signaling dynamics. These results provide critical insights into the pathological role of GluN2A in schizophrenia.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.