On plastic crack driving force in crystal-plasticity phase-field fracture model

IF 4.7 2区 工程技术 Q1 MECHANICS
Yucheng Shu , Wenxuan Hu , Yiqi Zhu, Min Yi
{"title":"On plastic crack driving force in crystal-plasticity phase-field fracture model","authors":"Yucheng Shu ,&nbsp;Wenxuan Hu ,&nbsp;Yiqi Zhu,&nbsp;Min Yi","doi":"10.1016/j.engfracmech.2025.111140","DOIUrl":null,"url":null,"abstract":"<div><div>Coupled crystal-plasticity phase-field (CPPF) fracture models could potentially forecast short crack propagation, but there is no consensus on the crack driving force (CDF) from the plastic contribution among existing CPPF fracture models. Herein, we systematically investigate CPPF fracture models with four types of plastic CDFs and identify these models’ capability in simulating crack propagation in single crystal. These models comprehensively account for various CDFs arising from plastic dissipated energy (<span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>p,diss</mtext></mrow></msup></math></span>), plastic locking energy (<span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>p,lock</mtext></mrow></msup></math></span>), defect energy (<span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>p,defect</mtext></mrow></msup></math></span>), and <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>p,diss</mtext></mrow></msup></math></span> combined with critical energy release rate (<span><math><msub><mrow><mi>G</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span>) reduction. The objective is to assess the rationality and distinctions among different CPPF fracture models in simulating the fracture of single crystal and analyze the change of plastic strain and plastic energy during crack propagation. It is found that in a single-edge notched face-centered cubic single-crystal copper subjected to tension along [001] direction, the CPPF fracture models with CDF from <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>p,diss</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>p,defect</mtext></mrow></msup></math></span> can only reproduce the brittle-like type-I cracking with crack path perpendicular to [001] axis. This is attributed to that both <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>p,diss</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>p,defect</mtext></mrow></msup></math></span> are much lower than elastic energy (<span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>e</mtext></mrow></msup></math></span>) and thus <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>e</mtext></mrow></msup></math></span> dominates the cracking behavior. In contrast, CPPF fracture models with CDF from <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>p,lock</mtext></mrow></msup></math></span> and <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>p,diss</mtext></mrow></msup></math></span> with <span><math><msub><mrow><mi>G</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span> reduction can replicate the ductile cracking with crack path along the slip direction (45 ° to [001] axis), agreeing with experimental observations. The model with <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mtext>p,lock</mtext></mrow></msup></math></span> is further demonstrated rational in predicting both brittle and ductile fracture. In addition, the model is utilized to simulate the crack propagation in polycrystalline copper, further validating its potential applicability in polycrystalline materials. Our work has clarified the role of different types of plastic CDFs in CPPF fracture model and could shed light on the CPPF modeling of short crack propagation in metals.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"322 ","pages":"Article 111140"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425003418","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Coupled crystal-plasticity phase-field (CPPF) fracture models could potentially forecast short crack propagation, but there is no consensus on the crack driving force (CDF) from the plastic contribution among existing CPPF fracture models. Herein, we systematically investigate CPPF fracture models with four types of plastic CDFs and identify these models’ capability in simulating crack propagation in single crystal. These models comprehensively account for various CDFs arising from plastic dissipated energy (ψp,diss), plastic locking energy (ψp,lock), defect energy (ψp,defect), and ψp,diss combined with critical energy release rate (Gc) reduction. The objective is to assess the rationality and distinctions among different CPPF fracture models in simulating the fracture of single crystal and analyze the change of plastic strain and plastic energy during crack propagation. It is found that in a single-edge notched face-centered cubic single-crystal copper subjected to tension along [001] direction, the CPPF fracture models with CDF from ψp,diss and ψp,defect can only reproduce the brittle-like type-I cracking with crack path perpendicular to [001] axis. This is attributed to that both ψp,diss and ψp,defect are much lower than elastic energy (ψe) and thus ψe dominates the cracking behavior. In contrast, CPPF fracture models with CDF from ψp,lock and ψp,diss with Gc reduction can replicate the ductile cracking with crack path along the slip direction (45 ° to [001] axis), agreeing with experimental observations. The model with ψp,lock is further demonstrated rational in predicting both brittle and ductile fracture. In addition, the model is utilized to simulate the crack propagation in polycrystalline copper, further validating its potential applicability in polycrystalline materials. Our work has clarified the role of different types of plastic CDFs in CPPF fracture model and could shed light on the CPPF modeling of short crack propagation in metals.

Abstract Image

晶体-塑性相场断裂模型中塑性裂纹驱动力的研究
晶体-塑性相场(CPPF)耦合断裂模型具有预测短裂纹扩展的潜力,但现有的CPPF断裂模型对塑性贡献的裂纹驱动力(CDF)尚未达成共识。在此,我们系统地研究了四种类型的塑性CDFs的CPPF断裂模型,并确定了这些模型模拟单晶裂纹扩展的能力。这些模型综合考虑了由塑性耗散能(ψp,diss)、塑性锁定能(ψp,lock)、缺陷能(ψp,defect)和临界能量释放率(Gc)降低引起的各种CDFs。目的是评估不同CPPF断裂模型在模拟单晶断裂时的合理性和区别,分析裂纹扩展过程中塑性应变和塑性能的变化。研究发现,在沿[001]方向受拉伸的单边缺口面心立方单晶铜中,采用来自于ψp、diss和ψp的CDF缺陷的CPPF断裂模型只能再现裂纹路径垂直于[001]轴的类脆性i型裂纹。这是由于缺陷ψp,diss和ψp都比弹性能(ψe)小得多,因而在开裂行为中占主导地位。相比而言,采用CDF从ψp,lock和ψp,diss进行Gc约简的CPPF断裂模型可以沿滑移方向(45°~[001]轴)复制裂纹路径的延性裂纹,与实验结果一致。进一步证明了带锁的模型在预测脆性断裂和韧性断裂方面都是合理的。此外,利用该模型对多晶铜中的裂纹扩展进行了模拟,进一步验证了该模型在多晶材料中的潜在适用性。我们的工作明确了不同类型的塑性CDFs在CPPF断裂模型中的作用,为CPPF模拟金属短裂纹扩展提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信