Munasir , Aditya Prapanca , Mohamad Fikri Aliansah , Frizky Audis Paramudhita , Nuhaa Faaizatunnisa , Muhammad Naufal Ariesta , Ahmad Taufiq
{"title":"Self-healing graphene-based composite hydrogels for motion Sensing: Source, fabrication, and applications in assistive technologies – A review","authors":"Munasir , Aditya Prapanca , Mohamad Fikri Aliansah , Frizky Audis Paramudhita , Nuhaa Faaizatunnisa , Muhammad Naufal Ariesta , Ahmad Taufiq","doi":"10.1016/j.sintl.2025.100338","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene-based self-healing hydrogels represent a significant advancement in motion sensing technologies, particularly for assistive applications aimed at improving the quality of life for individuals with disabilities. The use of renewable biomass as a feedstock for graphene production addresses environmental concerns related to traditional fossil fuel-derived methods, promoting sustainability. Unlike previous reviews that focus on general graphene or hydrogel sensors, this review specifically explores self-healing graphene-based hydrogels for wearable strain sensing in assistive technologies, with an emphasis on structure–property–performance relationships and design considerations. The review examines the conductive properties of graphene and compares production techniques, highlighting their influence on sensor performance. The role of hydrogel polymers as substrates is also discussed, with a focus on how their chemical composition and physical properties affect graphene integration and the self-healing capabilities of the composites. Fabrication and characterization methodologies are contrasted to assess their impact on material performance and sensor efficacy. Practical applications are evaluated based on sensitivity, response time, durability, and long-term stability. The review concludes with a discussion on ongoing challenges and future research directions, aiming to further advance the development of biomass-derived graphene-based motion sensing technologies.</div></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"6 ","pages":"Article 100338"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351125000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene-based self-healing hydrogels represent a significant advancement in motion sensing technologies, particularly for assistive applications aimed at improving the quality of life for individuals with disabilities. The use of renewable biomass as a feedstock for graphene production addresses environmental concerns related to traditional fossil fuel-derived methods, promoting sustainability. Unlike previous reviews that focus on general graphene or hydrogel sensors, this review specifically explores self-healing graphene-based hydrogels for wearable strain sensing in assistive technologies, with an emphasis on structure–property–performance relationships and design considerations. The review examines the conductive properties of graphene and compares production techniques, highlighting their influence on sensor performance. The role of hydrogel polymers as substrates is also discussed, with a focus on how their chemical composition and physical properties affect graphene integration and the self-healing capabilities of the composites. Fabrication and characterization methodologies are contrasted to assess their impact on material performance and sensor efficacy. Practical applications are evaluated based on sensitivity, response time, durability, and long-term stability. The review concludes with a discussion on ongoing challenges and future research directions, aiming to further advance the development of biomass-derived graphene-based motion sensing technologies.