A mathematical PAPR estimation of OTFS network using a machine learning SVM algorithm

Q3 Physics and Astronomy
Arun Kumar , Nishant Gaur , Aziz Nanthaamornphong
{"title":"A mathematical PAPR estimation of OTFS network using a machine learning SVM algorithm","authors":"Arun Kumar ,&nbsp;Nishant Gaur ,&nbsp;Aziz Nanthaamornphong","doi":"10.1016/j.rio.2025.100834","DOIUrl":null,"url":null,"abstract":"<div><div>The article presents a Support Vector Machine (SVM) algorithm to lower the peak-to-average power ratio (PAPR) in networks that work in orthogonal time frequency space (OTFS). High PAPR makes power amplifiers less efficient and lowers signal quality. This makes OTFS modulation challenging, even though it is known for being strong in situations with a lot of movement. We present a mathematical framework that uses SVM, selective mapping (SLM), partial transmission sequence (PTS), and clipping and filtering (C&amp;F) to estimate PAPR correctly, effectively lowering the PAPR while maintaining bit error rate (BER) performance. The proposed SVM method reduces the PAPR associated with conventional PAPR estimation techniques. The numerical results reveal that the proposed SVM obtained a signal-to-noise ratio (SNR) gain in the range of 1 dB–3 dB and retained the BER performance of the framework. This leads to better power control and overall better network performance. This paper demonstrates the potential of machine learning in optimizing OTFS networks, paving the way for more reliable and efficient radio systems.</div></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":"21 ","pages":"Article 100834"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666950125000628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents a Support Vector Machine (SVM) algorithm to lower the peak-to-average power ratio (PAPR) in networks that work in orthogonal time frequency space (OTFS). High PAPR makes power amplifiers less efficient and lowers signal quality. This makes OTFS modulation challenging, even though it is known for being strong in situations with a lot of movement. We present a mathematical framework that uses SVM, selective mapping (SLM), partial transmission sequence (PTS), and clipping and filtering (C&F) to estimate PAPR correctly, effectively lowering the PAPR while maintaining bit error rate (BER) performance. The proposed SVM method reduces the PAPR associated with conventional PAPR estimation techniques. The numerical results reveal that the proposed SVM obtained a signal-to-noise ratio (SNR) gain in the range of 1 dB–3 dB and retained the BER performance of the framework. This leads to better power control and overall better network performance. This paper demonstrates the potential of machine learning in optimizing OTFS networks, paving the way for more reliable and efficient radio systems.
基于机器学习支持向量机算法的OTFS网络PAPR数学估计
本文提出了一种支持向量机(SVM)算法来降低工作在正交时频空间(OTFS)中的网络的峰均功率比(PAPR)。高PAPR会降低功率放大器的效率,降低信号质量。这使得OTFS调制具有挑战性,尽管它以在大量移动的情况下很强而闻名。我们提出了一个数学框架,该框架使用支持向量机、选择性映射(SLM)、部分传输序列(PTS)和裁剪和滤波(C&;F)来正确估计PAPR,有效地降低PAPR,同时保持误码率(BER)性能。提出的支持向量机方法降低了传统PAPR估计技术的PAPR。结果表明,该支持向量机的信噪比增益在1 dB - 3 dB范围内,并保持了框架的误码率性能。这将带来更好的电源控制和更好的整体网络性能。本文展示了机器学习在优化OTFS网络方面的潜力,为更可靠和高效的无线电系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信