{"title":"Étude statistique du facteur premier médian, 3 : lois de répartition","authors":"Jonathan Rotgé","doi":"10.1016/j.bulsci.2025.103641","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Gaussian limit law for the distribution of the middle prime factor of an integer, defined according to multiplicity or not. We obtain an optimal bound for the speed of convergence, thereby improving on previous estimates available in the literature.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"203 ","pages":"Article 103641"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000673","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the Gaussian limit law for the distribution of the middle prime factor of an integer, defined according to multiplicity or not. We obtain an optimal bound for the speed of convergence, thereby improving on previous estimates available in the literature.