{"title":"The diameter of random Schreier graphs","authors":"Daniele Dona , Luca Sabatini","doi":"10.1016/j.ejc.2025.104164","DOIUrl":null,"url":null,"abstract":"<div><div>We give a combinatorial proof of the following theorem. Let <span><math><mi>G</mi></math></span> be any finite group acting transitively on a set of cardinality <span><math><mi>n</mi></math></span>. If <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>G</mi></mrow></math></span> is a random set of size <span><math><mi>k</mi></math></span>, with <span><math><mrow><mi>k</mi><mo>≥</mo><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><mi>ɛ</mi></mrow></msup></mrow></math></span> for some <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span>, then the diameter of the corresponding Schreier graph is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msub><mrow><mo>log</mo></mrow><mrow><mi>k</mi></mrow></msub><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with high probability. Except for the implicit constant, this result is the best possible.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104164"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000472","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We give a combinatorial proof of the following theorem. Let be any finite group acting transitively on a set of cardinality . If is a random set of size , with for some , then the diameter of the corresponding Schreier graph is with high probability. Except for the implicit constant, this result is the best possible.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.