The diameter of random Schreier graphs

IF 1 3区 数学 Q1 MATHEMATICS
Daniele Dona , Luca Sabatini
{"title":"The diameter of random Schreier graphs","authors":"Daniele Dona ,&nbsp;Luca Sabatini","doi":"10.1016/j.ejc.2025.104164","DOIUrl":null,"url":null,"abstract":"<div><div>We give a combinatorial proof of the following theorem. Let <span><math><mi>G</mi></math></span> be any finite group acting transitively on a set of cardinality <span><math><mi>n</mi></math></span>. If <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>G</mi></mrow></math></span> is a random set of size <span><math><mi>k</mi></math></span>, with <span><math><mrow><mi>k</mi><mo>≥</mo><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><mi>ɛ</mi></mrow></msup></mrow></math></span> for some <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, then the diameter of the corresponding Schreier graph is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msub><mrow><mo>log</mo></mrow><mrow><mi>k</mi></mrow></msub><mi>n</mi><mo>)</mo></mrow></mrow></math></span> with high probability. Except for the implicit constant, this result is the best possible.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104164"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000472","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a combinatorial proof of the following theorem. Let G be any finite group acting transitively on a set of cardinality n. If SG is a random set of size k, with k(logn)1+ɛ for some ɛ>0, then the diameter of the corresponding Schreier graph is O(logkn) with high probability. Except for the implicit constant, this result is the best possible.
随机Schreier图的直径
我们给出下列定理的一个组合证明。设G为传递作用于一个基数n的集合上的任意有限群。如果S≥(logn) G是一个大小为k的随机集合,且k≥(logn)1+ k,且对于某些k >;0,则对应的Schreier图的直径大概率为O(logkn)。除了隐式常数,这个结果是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信